26 research outputs found

    Strain-tuning of the magnetocaloric transition temperature in model FeRh films

    Get PDF
    The chemically ordered B2 phase of equiatomic FeRh is known to absorb or evolve a significant latent heat as it traverses its first-order phase transition in response to thermal, magnetic, and mechanical drivers. This attribute makes FeRh an ideal magnetocaloric material testbed for investigation of relationships between the crystalline lattice and the magnetic spins, which are especially experimentally accessible in thin films. In this work, epitaxial FeRh films of nominal 30 nm and 50 nm thicknesses with out-of-plane c-axis orientation were sputter-deposited at high temperature onto (0 0 1)-MgO or (0 0 0 1)-Al2O3 substrates and capped with Al, Au, Cr, or W after in situ annealing at 973 K to promote CsCl-type chemical order. In this manner a controlled strain state was invoked. Experimental results derived from laboratory and synchrotron x-ray diffraction combined with magnetometry indicate that the antiferromagnetic (AF)—ferromagnetic (FM) magnetostructural phase transformation in these films may be tuned over an ~50° range (373 K–425 K) through variation in the c/a ratio derived from lattice strain delivered by the substrate and the capping layers. These results supply fundamental information that might be used to engineer the magnetocaloric working material in new system designs by introducing targeted values of passive strain to the system
    corecore