26 research outputs found

    First -decay spectroscopy of and new -decay branches of

    Get PDF
    19 pags., 14 figs., 3 tabs.The  decay of the neutron-rich and was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number above the shell. The -delayed -ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three -decay branches of were established, two of which were observed for the first time. Population of neutron-unbound states decaying via rays was identified in the two daughter nuclei of and , at excitation energies exceeding the neutron separation energy by 1 MeV. The -delayed one- and two-neutron emission branching ratios of were determined and compared with theoretical calculations. The -delayed one-neutron decay was observed to be dominant -decay branch of even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of . Transitions following the  decay of are reported for the first time, including rays tentatively attributed to . In total, six new levels were identified in on the basis of the coincidences observed in the and decays. A transition that might be a candidate for deexciting the missing neutron single-particle state in was observed in both  decays and its assignment is discussed. Experimental level schemes of and are compared with shell-model predictions. Using the fast timing technique, half-lives of the , and levels in were determined. From the lifetime of the state measured for the first time, an unexpectedly large transition strength was deduced, which is not reproduced by the shell-model calculations.M.P.-S. acknowledges the funding support from the Polish National Science Center under Grants No. 2019/33/N/ST2/03023 and No. 2020/36/T/ST2/00547 (Doctoral scholarship ETIUDA). J.B. acknowledges support from the Universidad Complutense de Madrid under the Predoctoral Grant No. CT27/16- CT28/16. This work was partially funded by the Polish National Science Center under Grants No. 2020/39/B/ST2/02346, No. 2015/18/E/ST2/00217, and No. 2015/18/M/ST2/00523, by the Spanish government via Projects No. FPA2017-87568-P, No. RTI2018-098868-B-I00, No. PID2019-104390GB-I00, and No. PID2019-104714GB-C21, by the U.K. Science and Technology Facilities Council (STFC), the German BMBF under Contract No. 05P18PKCIA, by the Portuguese FCT under the Projects No. CERN/FIS-PAR/0005/2017, and No. CERN/FIS-TEC/0003/2019, and by the Romanian IFA Grant CERN/ISOLDE. The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 654002. M.Str. acknowledges the funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 771036 (ERC CoG MAIDEN). J.P. acknowledges support from the Academy of Finland (Finland) with Grant No. 307685. Work at the University of York was supported under STFC Grants No. ST/L005727/1 and No. ST/P003885/1

    New Frontiers in Work and Family Research

    No full text
    Includes bibliographical references and index

    Correlates of Mental Health Among Latino Farmworkers in North Carolina

    No full text
    Latino farmworkers are a vulnerable population who confront multiple threats to their mental health. Informed by the stress-process model of psychiatric disorder, the goal of this paper is to determine personal and situational correlates of poor mental health among Latino farmworkers. Structured interview data were obtained from farmworkers (N=69) in six counties in eastern and western North Carolina. Results indicated that a substantial number of farmworkers have poor mental health, as indicated by elevated depressive symptoms (52.2%) and anxiety (16.4%). Results also indicated that each mental health outcome had different predictors. Addressing the mental health issues of farmworkers requires a comprehensive, multifaceted approach

    Role of photoadduct of K4 Fe(CN)6 and C3 H4 N2 in improving thermal stability of polyaniline composite

    No full text
    This paper involves the synthesis of polyaniline composite with photoadduct of potassium hexacyanoferrate and imidazole via photochemical route by oxidative polymerization technique by ammonium persulphate. The photoadduct has been synthesized by photoirradiation followed by substitution with imidazole ligand. The photoaquation, substitution and successful synthesis has been proved by recording pH, UV visible spectra before and after irradiation and XRD of photoadduct. The as synthesized composite has been subjected to various characterizations like elemental analysis, UV–Visible spectra, FTIR, XRD, SEM, and TG/DTG. XRD of photoadduct shows crystalline structure which has been retained in the composite, changing the amorphous structure of polyaniline into the crystalline one, hence proving the insertion of photoadduct in the polymer chain. Various parameters like crystallite size (L), interplanar distance (d), micro strain (ε), dislocation density (δ) and distortion parameters (g) were calculated from XRD data. Thermal analysis shows the high thermal stability of composite which can be due to strong interaction between polymer chain and the photoadduct which restricts the thermal motion of polyaniline and thus enhances the thermal stability of composite
    corecore