62 research outputs found

    Pore wall corrugation effect on the dynamics of adsorbed H 2 studied by in situ quasi elastic neutron scattering Observation of two timescaled diffusion

    Get PDF
    The self diffusion mechanisms for adsorbed H2 in different porous structures are investigated with in situ quasi elastic neutron scattering method at a temperature range from 50 K to 100 K and at various H2 loadings. The porous structures of the carbon materials have been characterized by sorption analysis with four different gases and the results are correlated with previous in depth analysis with small angle neutron scattering method. Thus, an investigation discussing the effect of pore shape and size on the nature of adsorbed H2 self diffusion is performed. It is shown that H2 adsorbed in nanometer scale pores is self diffusing in two distinguishable timescales. The effect of the pore, pore wall shape and corrugation on the fraction of confined and more mobile H2 is determined and analyzed. The increased corrugation of the pore walls is shown to have a stronger confining effect on the H2 motions. The difference of self diffusional properties of the two H2 components are shown to be smaller when adsorbed in smoother walled pores. This is attributed to the pore wall corrugation effect on the homogeneity of formed adsorbed layer

    Evidence that the Human Pathogenic Fungus Cryptococcus neoformans var. grubii May Have Evolved in Africa

    Get PDF
    Most of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A), are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis. Patients with HIV/AIDS have been ravaged by cryptococcosis – an estimated one million new cases occur each year, and mortality approaches 50%. Using phylogenetic and population genetic analyses, we present evidence that C. neoformans var. grubii may have evolved from a diverse population in southern Africa. Our ecological studies support the hypothesis that a few of these strains acquired a new environmental reservoir, the excreta of feral pigeons (Columba livia), and were globally dispersed by the migration of birds and humans. This investigation also discovered a novel arboreal reservoir for highly diverse strains of C. neoformans var. grubii that are restricted to southern Africa, the mopane tree (Colophospermum mopane). This finding may have significant public health implications because these primal strains have optimal potential for evolution and because mopane trees contribute to the local economy as a source of timber, folkloric remedies and the edible mopane worm

    Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection

    Get PDF
    Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons

    Nanoscale Dynamics and Transport in Highly Ordered Low Dimensional Water

    No full text
    Highly ordered and highly cooperative water with properties of both solid and liquid states has been observed by means of neutron scattering in hydrophobic one dimensional channels with van der Waals diameter of 0.78 nm. We have found that in initial stages of adsorption water molecules occupy niches close to pore walls, followed later by the filling of the central pore area. Intensified by confinement intermolecular water interactions lead to the formation of well ordered hydrogen bonded water chains and to the onset of cooperative vibrations. On the other hand, the same intermolecular interactions lead to two relaxation processes, the faster of which is the spontaneous position exchange between two water molecules placed at 3.2 4 from each other. Self diffusion in an axial pore direction is the result of those spontaneous random exchanges and is substantially slower than the self diffusion in bulk wate

    Investigation of phonon suppression by nanostructuring and doping in thermoelectric half Heusler materials

    No full text
    We live in the age when humanity finds itself on the edge of energy crisis, fossil fuels are consumed and our energy consumption rises every year. One solution would be to obtain energy from renewable sources and to minimize the losses of energy produced, e.g. reuse the waste heat. Thermoelectric materials can convert heat directly and reversibly into electricity and allow therefore to use waste thermal energy more efficiently. Their benefits include the absence of moving parts, quiet operation, reliability, durability, and the fact that they do not produce any polluting emissions, so we can use them in a wide range of applications and they are also attractive from an environmental point of view. Half Heusler alloys belong to one of the most promising thermoelectric materials composed of relatively non toxic and abundant elements, with highest ZT 1.5 at 700 K for Zr0,25Hf0,25Ti0,5Ni1Sn0,998Sb0,002 at. alloy. In our study we try to improve the thermoelectric performance of this alloy by doping it with semiconducting dispersion phase amp; 946; FeSi2, which should reduce the thermal conductivity of the origin alloy. Since thermal conductivity depends to large extent on the propagation of phonons we have investigated how the nanostructuring of the samples by means of ball milling and doping impact the phonon behavior. For this purpose we have conducted inelastic neutron scattering experiments using the time of flight spectrometer NEAT at Helmholtz Zentrum Berlin. In this paper are presented results of our study demonstrating the effect of phonon suppression by nanostructuring and doping in thermoelectric half Heusler alloys
    • …
    corecore