52 research outputs found
TMEM244 Is a Long Non-Coding RNA Necessary for CTCL Cell Growth
Transmembrane protein 244 (TMEM244) was annotated to be a member of the TMEM family, which are is a component of cell membranes and is involved in many cellular processes. To date, the expression of the TMEM244 protein has not been experimentally confirmed, and its function has not been clarified. Recently, the expression of the TMEM244 gene was acknowledged to be a diagnostic marker for Sézary syndrome, a rare cutaneous T-cell lymphoma (CTCL). In this study, we aimed to determine the role of the TMEM244 gene in CTCL cells. Two CTCL cell lines were transfected with shRNAs targeting the TMEM244 transcript. The phenotypic effect of TMEM244 knockdown was validated using green fluorescent protein (GFP) growth competition assays and AnnexinV/7AAD staining. Western blot analysis was performed to identify the TMEM244 protein. Our results indicate that TMEM244 is not a protein-coding gene but a long non-coding RNA (lncRNA) that is necessary for the growth of CTCL cells.</p
Two Subsets of Naive T Helper Cells with Distinct T Cell Receptor Excision Circle Content in Human Adult Peripheral Blood
During ageing thymic function declines and is unable to meet the demand for peripheral T helper (Th) cell replenishment. Therefore, population maintenance of naive Th cells must be at least partly peripherally based. Such peripheral postthymic expansion of recent thymic emigrants (RTEs) during ageing consequently should lead to loss or dilution of T cell receptor excision circles (TRECs) from a subset of naive T cells. We have identified two subsets of naive Th cells in human adult peripheral blood characterized by a striking unequal content of TRECs, indicating different peripheral proliferative histories. TRECs are highly enriched in peripheral naive CD45RA+ Th cells coexpressing CD31 compared with peripheral naive CD45RA+ Th cells lacking CD31 expression, in which TRECs can hardly be detected. Furthermore we show that CD31−CD45RA+ Th cells account for increasing percentages of the naive peripheral Th cell pool during ageing but retain phenotypic and functional features of naive Th cells. As CD31 is lost upon T cell receptor (TCR) engagement in vitro, we hypothesize that TCR triggering is a prerequisite for homeostatically driven peripheral postthymic expansion of human naive RTEs. We describe here the identification of peripherally expanded naive Th cells in human adult blood characterized by the loss of CD31 expression and a highly reduced TREC content
Genome-Wide Analysis of Interchromosomal Interaction Probabilities Reveals Chained Translocations and Overrepresentation of Translocation Breakpoints in Genes in a Cutaneous T-Cell Lymphoma Cell Line
In classical models of tumorigenesis, the accumulation of tumor promoting chromosomal aberrations is described as a gradual process. Next-generation sequencing-based methods have recently revealed complex patterns of chromosomal aberrations, which are beyond explanation by these classical models of karyotypic evolution of tumor genomes. Thus, the term chromothripsis has been introduced to describe a phenomenon, where temporarily and spatially confined genomic instability results in dramatic chromosomal rearrangements limited to segments of one or a few chromosomes. Simultaneously arising and misrepaired DNA double-strand breaks are also the cause of another phenomenon called chromoplexy, which is characterized by the presence of chained translocations and interlinking deletion bridges involving several chromosomes. In this study, we demonstrate the genome-wide identification of chromosomal translocations based on the analysis of translocation-associated changes in spatial proximities of chromosome territories on the example of the cutaneous T-cell lymphoma cell line Se-Ax. We have used alterations of intra- and interchromosomal interaction probabilities as detected by genome-wide chromosome conformation capture (Hi-C) to infer the presence of translocations and to fine-map their breakpoints. The outcome of this analysis was subsequently compared to datasets on DNA copy number alterations and gene expression. The presence of chained translocations within the Se-Ax genome, partly connected by intervening deletion bridges, indicates a role of chromoplexy in the etiology of this cutaneous T-cell lymphoma. Notably, translocation breakpoints were significantly overrepresented in genes, which highlight gene-associated biological processes like transcription or other gene characteristics as a possible cause of the observed complex rearrangements. Given the relevance of chromosomal aberrations for basic and translational research, genome-wide high-resolution analysis of structural chromosomal aberrations will gain increasing importance
Developmental Stage, Phenotype, and Migration Distinguish Naive- and Effector/Memory-like CD4+ Regulatory T Cells
Regulatory T cells (Tregs) fulfill a central role in immune regulation. We reported previously that the integrin αEβ7 discriminates distinct subsets of murine CD4+ regulatory T cells. Use of this marker has now helped to unravel a fundamental dichotomy among regulatory T cells. αE−CD25+ cells expressed L-selectin and CCR7, enabling recirculation through lymphoid tissues. In contrast, αE-positive subsets (CD25+ and CD25−) displayed an effector/memory phenotype expressing high levels of E/P-selectin–binding ligands, multiple adhesion molecules as well as receptors for inflammatory chemokines, allowing efficient migration into inflamed sites. Accordingly, αE-expressing cells were found to be the most potent suppressors of inflammatory processes in disease models such as antigen-induced arthritis
Decreased level of recent thymic emigrants in CD4+ and CD8+T cells from CML patients
<p>Abstract</p> <p>Background</p> <p>T-cell immunodeficiency is a common feature in cancer patients, which may relate to initiation and development of tumor. Based on our previous finding, to further characterize the immune status, T cell proliferative history was analyzed in CD4+ and CD8+ T cells from chronic myeloid leukemia (CML) patients.</p> <p>Methods</p> <p>Quantitative analysis of δRec-ψJα signal joint T cell receptor excision circles (sjTRECs) was performed in PBMCs, CD3+, CD4+ and CD8+T cells by real-time PCR, and the analysis of 23 <it>TRBV-D1 </it>sjTRECs was performed by semi-nested PCR. Forty eight CML cases in chronic phase (CML-CP) were selected for this study and 17 healthy individuals served as controls.</p> <p>Results</p> <p>The levels of δRec-ψJα sjTRECs in PBMCs, CD3+, CD4+, and CD8+ T cells were significantly decreased in CML patients, compared with control groups. Moreover, the numbers of detectable <it>TRBV </it>subfamily sjTRECs, as well as the frequency of particular <it>TRBV-BD</it>1 sjTRECs in patients with CML were significantly lower than those from healthy individuals.</p> <p>Conclusions</p> <p>We observed decreased levels of recent thymic emigrants in CD4+ and CD8+ T cells that may underlay the persistent immunodeficiency in CML patients.</p
Increased Expression of Bcl11b Leads to Chemoresistance Accompanied by G1 Accumulation
BACKGROUND: The expression of BCL11B was reported in T-cells, neurons and keratinocytes. Aberrations of BCL11B locus leading to abnormal gene transcription were identified in human hematological disorders and corresponding animal models. Recently, the elevated levels of Bcl11b protein have been described in a subset of squameous cell carcinoma cases. Despite the rapidly accumulating knowledge concerning Bcl11b biology, the contribution of this protein to normal or transformed cell homeostasis remains open. METHODOLOGY/PRINCIPAL FINDINGS: Here, by employing an overexpression strategy we revealed formerly unidentified features of Bcl11b. Two different T-cell lines were forced to express BCL11B at levels similar to those observed in primary T-cell leukemias. This resulted in markedly increased resistance to radiomimetic drugs while no influence on death-receptor apoptotic pathway was observed. Apoptosis resistance triggered by BCL11B overexpression was accompanied by a cell cycle delay caused by accumulation of cells at G1. This cell cycle restriction was associated with upregulation of CDKN1C (p57) and CDKN2C (p18) cyclin dependent kinase inhibitors. Moreover, p27 and p130 proteins accumulated and the SKP2 gene encoding a protein of the ubiquitin-binding complex responsible for their degradation was repressed. Furthermore, the expression of the MYCN oncogene was silenced which resulted in significant depletion of the protein in cells expressing high BCL11B levels. Both cell cycle restriction and resistance to DNA-damage-induced apoptosis coincided and required the histone deacetylase binding N-terminal domain of Bcl11b. The sensitivity to genotoxic stress could be restored by the histone deacetylase inhibitor trichostatine A. CONCLUSIONS: The data presented here suggest a potential role of BCL11B in tumor survival and encourage developing Bcl11b-inhibitory approaches as a potential tool to specifically target chemoresistant tumor cells
NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells
<p>Abstract</p> <p>Background</p> <p>Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs.</p> <p>Methods</p> <p>Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses.</p> <p>Results</p> <p>Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3 and HEY1 was detected in primary TLX1/3 positive T-ALL cells corresponding to the cell line data.</p> <p>Conclusion</p> <p>Identification and analysis of MSX2 in hematopoietic cells implicates a modulatory role via NOTCH3-signaling in early T-cell differentiation. Our data suggest that reduction of NOTCH3-signaling by physiological downregulation of MSX2 expression during T-cell development is abrogated by ectopic expression of oncogenic NKLs, substituting MSX2 function.</p
High expression of TMEM244 is associated with poor overall survival of patients with T-cell lymphoma
Abstract T-cell lymphoma (TCL) is an aggressive and genetically heterogeneous malignancy with adverse clinical outcomes; thus, it is worth exploring biomarkers for risk stratification. Previous studies have demonstrated that transmembrane protein 244 gene (TMEM244) is ectopically expressed in Sézary syndrome (SS). In this study, the expression level of TMEM244 and its prognostic value for TCL patients was explored by analyzing RNA-seq data of two large datasets (GSE132550 and GSE113113) containing 129 TCL patients and 13 healthy individuals (HIs) from the Gene Expression Omnibus (GEO) database, the PRJCA002270 dataset containing 124 patients with T-cell acute lymphoblastic leukemia (T-ALL) from the BioProject database, and peripheral blood (PB) samples of 24 TCL and 29 T-ALL patients, as well as 11 normal CD3 + T-cells from our clinical center (JNU). The results suggested that TMEM244 was significantly up-regulated in TCL patients compared with normal CD3 + T-cells or T-ALL in the JNU, GSE132550 and GSE113113 datasets (P < 0.05). However, TMEM244 shows no expression in patients with T-ALL in the JNU-T-ALL and PRJCA002270 datasets. The receiver operating characteristic (ROC) curve analysis indicated that TMEM244 expression had a very high accuracy in diagnosing TCL compared with T-ALL (area under the curve (AUC): 99.4%; P < 0.001). Importantly, high TMEM244 expression was significantly associated with poor OS and shorter 5-year restricted mean survival time (RMST) in TCL patients, especially those treated with chemotherapy. In summary, TMEM244 is also expressed in other types of TCL besides SS, but not in T-ALL. High TMEM244 expression is associated with poor OS in TCL patients, which might be a novel biomarker for prognostic stratification in TCL patients and facilitate the design of novel therapies
- …