798 research outputs found
A Complete Statistical Analysis for the Quadrupole Amplitude in an Ellipsoidal Universe
A model of Universe with a small eccentricity due to the presence of a
magnetic field at the decoupling time (i.e. an Ellipsoidal Universe) has been
recently proposed for the solution of the low quadrupole anomaly of the angular
power spectrum of cosmic microwave background anisotropies. We present a
complete statistical analysis of that model showing that the probability of
increasing of the amplitude of the quadrupole is larger than the probability of
decreasing in the whole parameters' space.Comment: 5 pages, 3 figure
CMB low multipole alignments in the CDM and Dipolar models
The dipolar model \cite{Gordon:2005ai} has attracted much interest because it
may phenomenologically explain the CMB hemispherical power asymmetry found in
the WMAP and Planck data. Since such a model explicitly breaks isotropy at
large angular scales it is natural to wonder whether it can also explain other
CMB directional anomalies. Focusing on the low alignments and assuming
CDM, we confirm that the quadrupole/octupole and the
dipole/quadrupole/octupole alignments are anomalous with a significance up to
C.L., for both WMAP and Planck data. Moreover, we show for the first
time that such features are anomalous also in the dipolar model, roughly at the
same level as in CDM. We conclude that the dipolar model does not
provide a better fit to the data than the CDM.Comment: 13 pages, 2 figures and 4 table
A novel CMB polarization likelihood package for large angular scales built from combined WMAP and Planck LFI legacy maps
We present a CMB large-scale polarization dataset obtained by combining WMAP
Ka, Q and V with Planck 70 GHz maps. We employ the legacy frequency maps
released by the WMAP and Planck collaborations and perform our own Galactic
foreground mitigation technique, which relies on Planck 353 GHz for polarized
dust and on Planck 30 GHz and WMAP K for polarized synchrotron. We derive a
single, optimally-noise-weighted, low-residual-foreground map and the
accompanying noise covariance matrix. These are shown, through
analysis, to be robust over an ample collection of Galactic masks. We use this
dataset, along with the Planck legacy Commander temperature solution, to build
a pixel-based low-resolution CMB likelihood package, whose robustness we test
extensively with the aid of simulations, finding excellent consistency. Using
this likelihood package alone, we constrain the optical depth to reionazation
at C.L., on 54\% of the sky. Adding the
Planck high- temperature and polarization legacy likelihood, the Planck
lensing likelihood and BAO observations we find
in a full CDM exploration. The
latter bounds are slightly less constraining than those obtained employing
\Planck\ HFI CMB data for large angle polarization, that only include EE
correlations. Our bounds are based on a largely independent dataset that does
include also TE correlations. They are generally well compatible with Planck
HFI preferring slightly higher values of . We make the low-resolution
Planck and WMAP joint dataset publicly available along with the accompanying
likelihood code.Comment: The WMAP+LFI likelihood module is available on
\http://www.fe.infn.it/u/pagano/low_ell_datasets/wmap_lfi_legacy
On boundary terms and conformal transformations in curved space-times
We intend to clarify the interplay between boundary terms and conformal
transformations in scalar-tensor theories of gravity. We first consider the
action for pure gravity in five dimensions and show that, on compactifing a la
Kaluza-Klein to four dimensions, one obtains the correct boundary terms in the
Jordan (or String) Frame form of the Brans-Dicke action. Further, we analyze
how the boundary terms change under the conformal transformations which lead to
the Pauli (or Einstein) frame and to the non-minimally coupled massless scalar
field. In particular, we study the behaviour of the total energy in
asymptotically flat space-times as it results from surface terms in the
Hamiltonian formalism.Comment: LaTeX 2e, 12 pages, no figure
Optimized Large-Scale CMB Likelihood And Quadratic Maximum Likelihood Power Spectrum Estimation
We revisit the problem of exact CMB likelihood and power spectrum estimation
with the goal of minimizing computational cost through linear compression. This
idea was originally proposed for CMB purposes by Tegmark et al.\ (1997), and
here we develop it into a fully working computational framework for large-scale
polarization analysis, adopting \WMAP\ as a worked example. We compare five
different linear bases (pixel space, harmonic space, noise covariance
eigenvectors, signal-to-noise covariance eigenvectors and signal-plus-noise
covariance eigenvectors) in terms of compression efficiency, and find that the
computationally most efficient basis is the signal-to-noise eigenvector basis,
which is closely related to the Karhunen-Loeve and Principal Component
transforms, in agreement with previous suggestions. For this basis, the
information in 6836 unmasked \WMAP\ sky map pixels can be compressed into a
smaller set of 3102 modes, with a maximum error increase of any single
multipole of 3.8\% at , and a maximum shift in the mean values of a
joint distribution of an amplitude--tilt model of 0.006. This
compression reduces the computational cost of a single likelihood evaluation by
a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust
likelihood by implicitly regularizing nearly degenerate modes. Finally, we use
the same compression framework to formulate a numerically stable and
computationally efficient variation of the Quadratic Maximum Likelihood
implementation that requires less than 3 GB of memory and 2 CPU minutes per
iteration for , rendering low- QML CMB power spectrum
analysis fully tractable on a standard laptop.Comment: 13 pages, 13 figures, accepted by ApJ
A Study of Gaussianity in CMB band maps
The detection of non-Gaussianity in the CMB data would rule out a number of
inflationary models. A null detection of non-Gaussianity, instead, would
exclude alternative models for the early universe. Thus, a detection or
non-detection of primordial non-Gaussianity in the CMB data is crucial to
discriminate among inflationary models, and to test alternative scenarios.
However, there are various non-cosmological sources of non-Gaussianity. This
makes important to employ different indicators in order to detect distinct
forms of non-Gaussianity in CMB data. Recently, we proposed two new indicators
to measure deviation from Gaussianity on large angular scales, and used them to
study the Gaussianity of the raw band WMAP maps with and without the KQ75 mask.
Here we extend this work by using these indicators to perform similar analyses
of deviation from Gaussianity of the foreground-reduced Q, V, and W band maps.
We show that there is a significant deviation from Gaussianity in the
considered full-sky maps, which is reduced to a level consistent with
Gaussianity when the KQ75 mask is employed.Comment: 5 pages, 2 PS figures, uses ws-ijmpd.cls ; to be published in the
International Journal of Modern Physics
- …