167 research outputs found

    Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope

    Get PDF
    This paper discusses biomechanical issues that are related to the locomotion of a robotic endoscope in the human small intestine. The robot propels itself by pushing against the intestinal walls, much like a pipe crawler. However, the small intestine is not a rigid pipe; and locomotion in it is further complicated by the fact that the bowel is susceptible to damage. With the goal of engineering a safe and reliable machine, the biomechanical properties of the small bowel are studied and related to the mechanics of robotic endoscope locomotion through the small intestine

    Communications Biophysics

    Get PDF
    Contains reports on five research projects.National Institutes of Health (Grant 5 P01 GM14940-03)National Institutes of Health (Grant 5 TOl GM01555-03)National Aeronautics and Space Administration (Grant NGL 22-009-304

    A critical experimental study of the classical tactile threshold theory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tactile sense is being used in a variety of applications involving tactile human-machine interfaces. In a significant number of publications the classical threshold concept plays a central role in modelling and explaining psychophysical experimental results such as in stochastic resonance (SR) phenomena. In SR, noise enhances detection of sub-threshold stimuli and the phenomenon is explained stating that the required amplitude to exceed the sensory threshold barrier can be reached by adding noise to a sub-threshold stimulus. We designed an experiment to test the validity of the classical vibrotactile threshold. Using a second choice experiment, we show that individuals can order sensorial events below the level known as the classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level contradicting the definition of the classical tactile threshold.</p> <p>Results</p> <p>We performed a three alternative forced choice detection experiment on 6 subjects asking them first and second choices. In each trial, only one of the intervals contained a stimulus and the others contained only noise. According to the classical threshold assumptions, a correct second choice response corresponds to a guess attempt with a statistical frequency of 50%. Results show an average of 67.35% (STD = 1.41%) for the second choice response that is not explained by the classical threshold definition. Additionally, for low stimulus amplitudes, second choice correct detection is above chance level for any detectability level.</p> <p>Conclusions</p> <p>Using a second choice experiment, we show that individuals can order sensorial events below the level known as a classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level. Therefore, if detection exists below the classical threshold level, then the model to explain the SR phenomenon or any other tactile perception phenomena based on the psychophysical classical threshold is not valid. We conclude that a more suitable model of the tactile sensory system is needed.</p

    Effects of maintained depolarization of presynaptic neurons on inhibitory transmission in lobster neuropil

    Full text link
    1. Intracellular microeleotrode recordings were obtained from somata of the pre- and postsynaptic neurons of each of four neuron pairs in the stomatogastric ganglion of Panulirus argus . The microelectrodes were incorporated into a bridge circuit, permitting simultaneous recording and current passing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47114/1/359_2004_Article_BF00617544.pd

    Promoting Innovation and Convergence in Military Medicine: Technology-Inspired Problem Solving

    No full text
    • …
    corecore