585 research outputs found

    Relating Physical Observables in QCD without Scale-Scheme Ambiguity

    Full text link
    We discuss the St\"uckelberg-Peterman extended renormalization group equations in perturbative QCD, which express the invariance of physical observables under renormalization-scale and scheme-parameter transformations. We introduce a universal coupling function that covers all possible choices of scale and scheme. Any perturbative series in QCD is shown to be equivalent to a particular point in this function. This function can be computed from a set of first-order differential equations involving the extended beta functions. We propose the use of these evolution equations instead of perturbative series for numerical evaluation of physical observables. This formalism is free of scale-scheme ambiguity and allows a reliable error analysis of higher-order corrections. It also provides a precise definition for ΛMS‟\Lambda_{\overline{\rm MS}} as the pole in the associated 't Hooft scheme. A concrete application to R(e+e−→hadrons)R(e^+e^- \to {\rm hadrons}) is presented.Comment: Plain TEX, 4 figures (available upon request), 22 pages, DOE/ER/40322-17

    Consistent OPE Description of Gluon Two- and Three-point Green Function?

    Full text link
    We perform an OPE analysis of the flavorless non-perturbative gluon propagator and the symmetric three-gluon vertex in the Landau gauge. The first subdominant operator is AÎŒAÎŒA_\mu A^\mu which can condensate in the Landau gauge ``vacuum'' although being a non-gauge invariant operator. We neglect all higher dimension operators. Then the gluon propagator and the symmetric three gluon vertex only depend on one common unknown condensate. We propose a consistency check from lattice data. At two loops for the leading coefficient and with 1/p21/p^2 corrections at tree-level order the two fitted values for the condensate do not agree. At three loops we argue that the today unknown ÎČ2MOM\beta_2^{\rm MOM} should be equal to 1.5(3)×ÎČ2MOM~=7400(1500)1.5(3)\times \beta_2^{\widetilde{\rm MOM}}=7400(1500) to fulfill the OPE relation. Inclusion of the power corrections' anomalous dimensions should improve further the agreement. We show that these techniques cannot be applied to the asymmetric three gluon vertex with one vanishing momentum.Comment: latex-file,10 figs.,13 pg

    Model for sustainability implementation and measurement in construction sites

    Get PDF
    Sustainable practices at construction sites should be considered from the start of the project, meaning during the design phase. A model for the implementation of sustainability at a site is an important management tool, and its adoption can indicate good practices and propose an assessment of local conditions. Thus, the main contribution of this article is to propose a practical model to evaluate the level of implementation of sustainable practices at construction sites. The model was based on sustainability certifications and validated at six construction sites in Brazil. The results indicate that construction companies that possess environmental certifications have better levels of implementation of good practices at their work sites. However, it was noted that it is not necessary for a company to obtain an environmental certification; rather, it is necessary for sustainability strategies to become corporate culture.CAPES (Coordination for the Improvement of Higher Education Personnel) and CANTECHIS Collaborative Net Project ‐ Technologies for Social Housing Scheme (HIS) Sustainable Construction Sites, supported by FINEP (Financier of Studies and Projects

    Asymptotic scaling of the gluon propagtor on the lattice

    Get PDF
    We pursue the study of the high energy behaviour of the gluon propagator on the lattice in the Landau gauge in the flavorless case (n_f=0). It was shown in a precedin g paper that the gluon propagator did not reach three-loop asymptotic scaling at an energy scale as high as 5 GeV. Our present high statistics analysis includes also a simulation at ÎČ=6.8\beta=6.8 (a≃0.03a\simeq 0.03 fm), which allows to reach Ό≃10\mu \simeq 10 GeV. Special care has been devoted to the finite lattice-spacing artifacts as well as to the finite volume effects, the latter being acute at ÎČ=6.8\beta=6.8 where the volume is bounded by technical limits. Our main conclusion is a strong evidence that the gluon propagator has reached three-loop asymptotic scaling, at ÎŒ\mu ranging from 5.6 GeV to 9.5 GeV. We buttress up this conclusion on several demanding criteria of asymptoticity, including scheme independence. Our fit in the 5.6 GeV to 9.5 GeV window yields ΛMSˉ=319±14−20+10\Lambda^{\bar{{\rm MS}}} = 319 \pm 14 ^{+10}_{-20} MeV, in good agreement with our previous result, ΛMSˉ=295±20\Lambda^{\bar{{\rm MS}}} = 295 \pm 20 MeV, obtained from the three gluon vertex, but it is significantly above the Schr\"odinger functional method estimate : 238±19238 \pm 19 MeV. The latter difference is not understood. Confirming our previous paper, we show that a fourth loop is necessary to fit the whole (2.8Ă·9.52.8 \div 9.5) GeV energy window.Comment: latex-file, 19 pgs., 6 fig

    Remark on the perturbative component of inclusive τ\tau-decay

    Full text link
    In the context of the inclusive τ\tau-decay, we analyze various forms of perturbative expansions which have appeared as modifications of the original perturbative series. We argue that analytic perturbation theory, which combines renormalization-group invariance and Q2Q^2-analyticity, has significant merits favoring its use to describe the perturbative component of τ\tau-decay.Comment: 5 pages, ReVTEX, 2 eps figures. Revised paper includes clarifying remarks and corrected references. To be published in Phys. Rev.

    Factorization Properties of Soft Graviton Amplitudes

    Full text link
    We apply recently developed path integral resummation methods to perturbative quantum gravity. In particular, we provide supporting evidence that eikonal graviton amplitudes factorize into hard and soft parts, and confirm a recent hypothesis that soft gravitons are modelled by vacuum expectation values of products of certain Wilson line operators, which differ for massless and massive particles. We also investigate terms which break this factorization, and find that they are subleading with respect to the eikonal amplitude. The results may help in understanding the connections between gravity and gauge theories in more detail, as well as in studying gravitational radiation beyond the eikonal approximation.Comment: 35 pages, 5 figure

    The Determination of alpha_s from Tau Decays Revisited

    Full text link
    We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau hadronic spectral moments in light of (1) the recent calculation of the fourth-order perturbative coefficient K_4 in the expansion of the Adler function, (2) new precision measurements from BABAR of e+e- annihilation cross sections, which decrease the uncertainty in the separation of vector and axial-vector spectral functions, and (3) improved results from BABAR and Belle on tau branching fractions involving kaons. We estimate that the fourth-order perturbative prediction reduces the theoretical uncertainty, introduced by the truncation of the series, by 20% with respect to earlier determinations. We discuss to some detail the perturbative prediction and show that the effect of the incomplete knowledge of the series is reduced by using the so-called contour-improved calculation, as opposed to fixed-order perturbation theory which manifests convergence problems. The corresponding theoretical uncertainties are studied at the tau and Z mass scales. Nonperturbative contributions extracted from the most inclusive fit are small, in agreement with earlier determinations. Systematic effects from quark-hadron duality violation are estimated with simple models and found to be within the quoted systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007, where the first error is experimental and the second theoretical. After evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005, where the errors are respectively experimental, theoretical and due to the evolution. The result is in agreement with the corresponding NNNLO value derived from essentially the Z width in the global electroweak fit. The alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure

    Nontrivial, Asymptotically Non-free Gauge Theories and Dynamical Unification of Couplings

    Full text link
    An evidence for nontriviality of asymptotically non-free (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of dynamical unification of couplings (DUC) The second-order reduction of couplings in the ANF SU(3)SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC

    p3d – Python module for structural bioinformatics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput bioinformatic analysis tools are needed to mine the large amount of structural data via knowledge based approaches. The development of such tools requires a robust interface to access the structural data in an easy way. For this the Python scripting language is the optimal choice since its philosophy is to write an understandable source code.</p> <p>Results</p> <p>p3d is an object oriented Python module that adds a simple yet powerful interface to the Python interpreter to process and analyse three dimensional protein structure files (PDB files). p3d's strength arises from the combination of a) very fast spatial access to the structural data due to the implementation of a binary space partitioning (BSP) tree, b) set theory and c) functions that allow to combine a and b and that use human readable language in the search queries rather than complex computer language. All these factors combined facilitate the rapid development of bioinformatic tools that can perform quick and complex analyses of protein structures.</p> <p>Conclusion</p> <p>p3d is the perfect tool to quickly develop tools for structural bioinformatics using the Python scripting language.</p
    • 

    corecore