22 research outputs found

    The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells

    Get PDF
    Transcription factors NF-KB1 and c-Rel, individually dispensable during embryogenesis, serve similar, yet distinct, roles in the function of mature hemopoietic cells. Redundancy among Rel/ NF-KB family members prompted an examination of the combined roles of c-Rel and NF-KB1 by using mice that lack both proteins. Embryonic development and the maturation of hemopoietic progenitors were unaffected in nfkb1(-/-)c-rel(-/-) mice. Peripheral T cell populations developed normally, but follicular, marginal zone, and CD5(+) peritoneal B cell populations all were reduced. In culture, a failure of mitogen-stimulated nfkb1(-/-)c-rel(-/-) B cells to proliferate was caused by a cell cycle defect in early G(1) that prevented growth. In vivo, defects in humoral immunity and splenic architecture seen in nfkbl(-/-) and c-rel(-/-) mice were exacerbated in the double mutant mice. These findings demonstrate that in the B lineage overlapping roles for NF-K81 and c-Rel appear to be restricted to regulating the activation and function of mature cells

    c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells

    Get PDF
    During thymopoiesis, a unique program of gene expression promotes the development of CD4 regulatory T (T reg) cells. Although Foxp3 maintains a pattern of gene expression necessary for T reg cell function, other transcription factors are emerging as important determinants of T reg cell development. We show that the NF-κB transcription factor c-Rel is highly expressed in thymic T reg cells and that in c-rel−/− mice, thymic T reg cell numbers are markedly reduced as a result of a T cell–intrinsic defect that is manifest during thymocyte development. Although c-Rel is not essential for TGF-β conversion of peripheral CD4+CD25− T cells into CD4+Foxp3+ cells, it is required for optimal homeostatic expansion of peripheral T reg cells. Despite a lower number of peripheral T reg cells in c-rel−/− mice, the residual peripheral c-rel−/− T reg cells express normal levels of Foxp3, display a pattern of cell surface markers and gene expression similar to those of wild-type T reg cells, and effectively suppress effector T cell function in culture and in vivo. Collectively, our results indicate that c-Rel is important for both the thymic development and peripheral homeostatic proliferation of T reg cells

    Foxo-mediated Bim transcription is dispensable for the apoptosis of hematopoietic cells that is mediated by this BH3-only protein

    Get PDF
    The BH3-only protein Bim is a critical initiator of apoptosis in hematopoietic cells. Bim is upregulated in response to growth factor withdrawal and in vitro studies have implicated the transcription factor Foxo3a as a critical inducer. To test the importance of this regulation in vivo, we generated mice with mutated Foxo-binding sites within the Bim promoters (Bim(ΔFoxo/ΔFoxo)). Contrary to Bim-deficient mice, Bim(ΔFoxo/ΔFoxo) mice had a normal hematopoietic system. Moreover, cytokine-dependent haematopoietic cells from Bim(ΔFoxo/ΔFoxo) and wt mice died at similar rates. These results indicate that regulation of Bim by Foxo transcription factors is not critical for the killing of hematopoietic cells

    The Transcription Factors c-rel and RelA Control Epidermal Development and Homeostasis in Embryonic and Adult Skin via Distinct Mechanisms

    No full text
    Determining the roles of Rel/NF-κB transcription factors in mouse skin development with loss-of-function mutants has been limited by redundancy among these proteins and by embryonic lethality associated with the absence of RelA. Using mice lacking RelA and c-rel, which survive throughout embryogenesis on a tumor necrosis factor alpha (TNF-α)-deficient background (rela(−/−) c-rel(−/−) tnfα(−/−)), we show that c-rel and RelA are required for normal epidermal development. Although mutant fetuses fail to form tylotrich hair and have a thinner epidermis, mutant keratinocyte progenitors undergo terminal differentiation to form an outer cornified layer. Mutant basal keratinocytes are abnormally small, exhibit a delay in G(1) progression, and fail to form keratinocyte colonies in culture. In contrast to the reduced proliferation of mutant keratinocytes during embryogenesis, skin grafting experiments revealed that the mutant epidermis develops a TNF-α-dependent hyperproliferative condition. Collectively, our findings indicate that RelA and c-rel control the development of the epidermis and associated appendages during embryogenesis and regulate epidermal homeostasis in a postnatal environment through the suppression of innate immune-mediated inflammation
    corecore