7 research outputs found

    Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound

    No full text
    Several thermal-therapy strategies such as thermal ablation, hyperthermia-triggered drug delivery from temperature-sensitive liposomes (TSLs), and combinations of the above were investigated in a rhabdomyosarcoma rat tumor model (n = 113). Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) was used as a noninvasive heating device with precise temperature control for image-guided drug delivery. For the latter, TSLs were prepared, coencapsulating doxorubicin (dox) and [Gd(HPDO3A)(H2O)], and injected in tumor-bearing rats before MR-HIFU treatment. Four treatment groups were defined: hyperthermia, ablation, hyperthermia followed by ablation, or no HIFU. The intratumoral TSL and dox distribution were analyzed by single-photon emission computed tomography (SPECT)/computed tomography (CT), autoradiography, and fluorescence microscopy. Dox biodistribution was quantified and compared with that of nonliposomal dox. Finally, the treatment efficacy of all heating strategies plus additional control groups (saline, free dox, and Caelyx) was assessed by tumor growth measurements. All HIFU heating strategies combined with TSLs resulted in cellular uptake of dox deep into the interstitial space and a significant increase of tumor drug concentrations compared with a treatment with free dox. Ablation after TSL injection showed [Gd(HPDO3A)(H2O)] and dox release along the tumor rim, mirroring the TSL distribution pattern. Hyperthermia either as standalone treatment or before ablation ensured homogeneous TSL, [Gd(HPDO3A)(H2O)], and dox delivery across the tumor. The combination of hyperthermia-triggered drug delivery followed by ablation showed the best therapeutic outcome compared with all other treatment groups due to direct induction of thermal necrosis in the tumor core and efficient drug delivery to the tumor rim

    Offset-Free Model Predictive Temperature Control for Ultrasound-Based Hyperthermia Cancer Treatments

    No full text
    Heating cancer cells over an extended period of time, referred to as hyperthermia, has been proven to enhance the effects of chemotherapy and radiotherapy without inducing additional toxicity or undesirable side effects, and is therefore considered a highly valuable adjuvant therapy in cancer treatment. In this work, a model predictive control (MPC) setup is developed for improving performance and robustness in regulating the temperature for magnetic-resonance-guided high-intensity focused ultrasound (MR-HIFU) hyperthermia treatments. The proposed control design incorporates a disturbance estimator as encountered in offset-free MPC that is able to remove the steady-state temperature error caused by plant-model mismatch. For the considered healthcare application, such modeling errors are inevitable in practice due to the high variability of tissue properties in patients, some of which even exhibit time- and temperature-dependent behavior due to the body's thermoregulatory response, combined with the fact that extensive model identification is undesirable in the clinic. The controller's performance is demonstrated by means of in vivo experiments on a porcine thigh muscle using a clinical MR-HIFU treatment setup

    Evaluation of Iron Oxide Nanoparticle Micelles for Magnetic Particle Imaging (MPI) of Thrombosis

    Get PDF
    Magnetic particle imaging (MPI) is an emerging medical imaging modality that directly visualizes magnetic particles in a hot-spot like fashion. We recently developed an iron oxide nanoparticle-micelle (ION-Micelle) platform that allows highly sensitive MPI. The goal of this study was to assess the potential of the ION-Micelles for MPI-based detection of thrombi. To this aim, an in vivo carotid artery thrombosis mouse model was employed and ex vivo magnetic particle spectrometer (MPS) measurements of the carotid arteries were performed. In addition, we studied the effect of functionalization of the ION-Micelle nanoplatform with fibrin-binding peptides (FibPeps) with respect to nanoparticle thrombus uptake and hence thrombus detection. In vivo quantitative MR imaging pre- and post-ION-Micelle injection was performed as reference for visualization of ION-micelle uptake. ION-Micelles significantly decreased T2 values in the thrombi with respect to pre-injection T2 values (p < 0.01) and significantly increased ex vivo MPS thrombus signal with respect to the noninjured, contralateral carotid (p < 0.01). Functionalization of the ION-Micelles with the FibPep peptides did not result in an increased MPS thrombus signal with respect to the non-fibrin binding ION-Micelles. The lack of a significant increased thrombus uptake for the FibPep-ION-Micelles indicates that (non-fibrin-specific) entrapment of nanoparticles in the mesh-like thrombi is the key contributor to thrombus nanoparticle uptake. Therefore, (nontargeted) ION-Micelles might be of value for noninvasive MPI-based diagnosis, characterization and treatment monitoring of thrombosis

    Feasibility study of MR-guided pancreas ablation using high-intensity focused ultrasound in a healthy swine model

    No full text
    Purpose:Pancreatic cancer is typically diagnosed in a late stage with limited therapeutic options. For those patients, ultrasound-guided high-intensity focused ultrasound (US-HIFU) can improve local control and alleviate pain. However, MRI-guided HIFU (MR-HIFU) has not yet been studied extensively in this context. To facilitate related research and accelerate clinical translation, we report a workflow for thein vivoHIFU ablation of the porcine pancreas under MRI guidance. Materials and methods:The pancreases of five healthy German landrace pigs (35-58 kg) were sonicated using a clinical MR-HIFU system. Acoustic access to the pancreas was supported by a specialized diet and a hydrogel compression device for bowel displacement. Organ motion was suspended using periods of apnea. The size of the resulting thermal lesions was assessed using the thermal threshold- and dose profiles, non-perfused volume, and gross examination. The effect of the compression device on beam path length was assessed using MRI imaging. Results:Eight of ten treatments resulted in clearly visible damage in the target tissue upon gross examination. Five treatments resulted in coagulative necrosis. Good agreement between the four metrics for lesion size and a clear correlation between the delivered energy dose and the resulting lesion size were found. The compression device notably shortened the intra-abdominal beam path. Conclusions:We demonstrated a workflow for HIFU treatment of the porcine pancreas in-vivo under MRI-guidance. This development bears significance for the development of MR-guided HIFU interventions on the pancreas as the pig is the preferred animal model for the translation of pre-clinical research into clinical application

    Early economic modeling of magnetic resonance image-guided high intensity focused ultrasound compared to radiotherapy for pain palliation of bone metastases

    No full text
    IntroductionMagnetic Resonance Image-guided High Intensity Focused Ultrasound (MR-HIFU) is a non-invasive treatment option for palliative patients with painful bone metastases. Early evidence suggests that MR-HIFU is associated with similar overall treatment response, but more rapid pain palliation compared to external beam radiotherapy (EBRT). This modelling study aimed to assess the cost-effectiveness of MR-HIFU as an alternative treatment option for painful bone metastases from the perspective of the German Statutory Health Insurance (SHI). Materials and methodsA microsimulation model with lifelong time horizon and one-month cycle length was developed. To calculate the incremental cost-effectiveness ratio (ICER), strategy A (MR-HIFU as first-line treatment or as retreatment option in case of persistent pain or only partial pain relief after EBRT) was compared to strategy B (EBRT alone) for patients with bone metastases due to breast, prostate, or lung cancer. Input parameters used for the model were extracted from the literature. Results were expressed as EUR per quality-adjusted life years (QALYs) and EUR per pain response (i.e., months spent with complete or partial pain response). Deterministic and probabilistic sensitivity analyses (PSA) were performed to test the robustness of results, and a value of information analysis was conducted. ResultsCompared to strategy B, strategy A resulted in additional costs (EUR 399) and benefits (0.02 QALYs and 0.95 months with pain response). In the base case, the resulting ICERs (strategy A vs. strategy B) are EUR 19,845/QALY and EUR 421 per pain response. Offering all patients MR-HIFU as first-line treatment would increase the ICER by 50% (31,048 EUR/QALY). PSA showed that at a (hypothetical) willingness to pay of EUR 20,000/QALY, the probability of MR-HIFU being cost-effective was 52%. The expected value of perfect information (EVPI) for the benefit population in Germany is approximately EUR 190 Mio. ConclusionAlthough there is considerable uncertainty, the results demonstrate that introducing MR-HIFU as a treatment alternative for painful bone metastases might be cost-effective for the German SHI. The high EVPI indicate that further studies to reduce uncertainty would be worthwhile
    corecore