15 research outputs found

    European Research on Magnetic Nanoparticles for Biomedical Applications: Standardisation Aspects

    Get PDF
    Magnetic nanoparticles have many applications in biomedicine and other technical areas. Despite their huge economic impact, there are no standardised procedures available to measure their basic magnetic properties. The International Organization for Standardization is working on a series of documents on the definition of characteristics of magnetic nanomaterials. We review previous and ongoing European research projects on characteristics of magnetic nanoparticles and present results of an online survey among European researchers

    Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation

    Get PDF
    Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response

    An Evaluation of Alternatives for Enhancing Anaerobic Digestion of Waste Activated Sludge

    Get PDF
    Waste activated sludge (WAS) is one of the largest by-products of biological wastewater treatment. Anaerobic digestion of WAS is beneficial for several reasons. In an ever increasingly energy conscientious world the production of renewable energy resources is becoming more important, and thus the production of methane has been seen as a valuable product. To achieve efficient conversion of organic matter to methane, the biomass in the digester must be provided optimal operating conditions, as well as adequate retention times, that will allow for substrate metabolism and prevent bacteria washout. Two approaches have been taken in this research to achieve improved biodegradation. Initially microwave pretreatment was employed to improve the biodegradability of the sludge, then the addition of a submerged hollow fibre membrane separation unit was used to allow for a longer SRT while maintaining the hydraulic residence time (HRT). The impact of microwave pretreatment on WAS characteristics was assessed for both the low temperature operations and the high temperature operations. An increase due to pretreatment on the filtered to total COD ratio when comparing the feed to the microwaved feed was established to be 200 % for low temperature operations and 254 % for high temperature operations. For the low temperature operations, CODT destruction, VS destruction, and organic nitrogen destruction were all higher for the test digester than the control digester indicating that the microwaving of the WAS increased the biodegradation in the anaerobic digester. For the high temperature operation, CODT destruction and organic nitrogen destruction were improved with microwave application, however VS destruction did not support this. The measured biogas data indicated that microwaving did influence the volume of biogas produced during anaerobic digestion of WAS for both the low and high temperature operations, and hence the VS destruction data for the high temperature operations was determined to be incorrect. For the membrane operations both the CODT and the VS destruction calculations indicated that at the same SRT the test digester was capable of more biodegradation than the control digester. The control digester organic nitrogen reduction was calculated to be higher than for the test digester, suggesting that the control digester removed more organic nitrogen than the test digester, however, these results were likely due to the lower HRT of the test digester compared to those of the control digester. A greater volume of biogas was produced by the test digester than the control digester; however, the composition of the gas from both digesters was similar, although the percentage of methane produced by the test digester was higher than that produced by the control digester. The higher destruction by the test digester indicated that the presence of the membrane unit and the decoupling of the HRT and SRT improved the biodegradation capability of the digesters. The results of the membrane performance study indicated that for a hollow fibre anaerobic membrane bioreactor, stable operations could be achieved with a total solids concentration of 2.01 %+/-0.34, an HRT of 15 days and an SRT of 30 days. With a constant flux of 14 L/m2-h +/-0.68 the average TMP was 0.079 kPa/min+/-0.08. No cleaning was required to achieve this, however the operations consisted of 20 minutes of permeation followed by 5 hours and 40 minutes of relaxation. The critical flux was determined to be in the range of 18 to 22 L/m2-h

    Platelet-Rich Plasma (PRP) in Breast Cancer Patients: An Application Analysis of 163 Sentinel Lymph Node Biopsies

    No full text
    Introduction. Literature shows platelet-rich plasma (PRP) to improve overall outcomes in orthopedics, dermatology, ophthalmology, gynecology, and plastic surgery. Data on oncological patients is very limited. Only one publication is available on PRP in breast cancer patients. This work evaluated PRP in sentinel node biopsy procedures for breast cancer patients in terms of complication rates and oncological short-term follow-up. Methods. The evaluated PRP was ACP (R), i.e., autologous conditioned plasma by Arthrex (R). Between 2015 and 2018, 163 patients were offered to receive an ACP (R)/PRP injection in their lymph node biopsy site. Recruitment resulted in an approximate one-to-one ratio for analysis. Endpoints were major (revision) and minor (seroma, hematoma, and infection) complications rates as well as distant metastases, local recurrence, and overall survival. Median follow-up was 30 months. Results. Complication rates and oncological follow-up showed PRP to be applicable to use in a sentinel node biopsy scenario in breast cancer patients. There were 0 revisions in the ACP (R)/PRP group and 1.2% revisions in the control group (not significant). Oncological follow-up showed zero (0) distant metastases and local recurrences as well as a 100% 30-month overall survival. Conclusions. This is the first analysis of ACP (R)/PRP used in breast cancer patients in a sentinel node biopsy setting worldwide. PRP does not seem to increase rates of local recurrence within this 30-month follow-up time frame. Also, trend towards decreasing complication rates could be shown

    Effective particle magnetic moment of multi-core particles

    No full text
    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems BNF Starch from Micromod with a median particle diameter of 100 am and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm

    Dendrimer-coated magnetic particles for radionuclide separation

    No full text
    Magnetic particles were synthesised for radionuclide removal from nuclear wastes by magnetic separation. Dendrimers with terminal amino groups attached to the particle surface were used to bind chelating groups for lanthanides and actinides. This led to a 50-400-fold increase of the distribution coefficients for europium and americium in comparison to the reference particles without the dendrimers. Back-extraction studies have demonstrated the possibility of multiple particle recycling
    corecore