416 research outputs found

    Glycogen: the forgotten cerebral energy store

    Get PDF
    The brain contains a significant amount of glycogen that is an order of magnitude smaller than that in muscle, but several-fold higher than the cerebral glucose content. Although the precise role of brain glycogen to date is unknown, it seems affected by focal activation, neurotransmitters, and overall electrical activity and hormones. Based on its relatively low concentration, the role of brain glycogen as a significant energy store has been discounted. This work reviews recent experimental evidence that brain glycogen is an important reserve of glucose equivalents: (1) glial glycogen can provide the majority of the glucose supply deficit during hypoglycemia for more than 100 min, consistent with the proposal that glial lactate is a fuel for neurons; (2) glycogen concentrations may be as high as 10 micromol/g, substantially higher than was thought previously; (3) glucose cycling in and out of glycogen amounts to approximately 1% of the cerebral metabolic rate of glucose (CMRglc) in human and rat brain, amounting to an effective stability of glycogen in the resting awake brain during euglycemia and hyperglycemia, (4) brain glycogen metabolism/concentrations are insulin/glucose sensitive; and (5) after a single episode of hypoglycemia, brain glycogen levels rebound to levels that exceed the pre-hypoglycemic concentrations (supercompensation). This experimental evidence supports the proposal that brain glycogen may be involved in the development of diabetes complications, specifically impaired glucose sensing (hypoglycemia unawareness) observed clinically in some diabetes patients under insulin treatment. It is proposed further that brain glycogen becomes important in any metabolic state where supply transiently cannot meet demand, such conditions that could occur during prolonged focal activation, sleep deprivation, seizures, and mild hypoxia

    Glial Energy Metabolism: A NMR Spectroscopy Perspective

    Get PDF
    Oxygen metabolism is uniquely compartmentalized between neurons and glia, the latter comprising about 25% of neuronal energy metabolism. The consumption of acetate and fixation of CO2 in glutamine occur in astrocytes by oxygen-dependent reactions, which power at least two-thirds of astrocyte ATP synthesis. Glia exhibit a large capacity to phosphorylate glucose and can store it in the form of glycogen, the major cerebral energy store, important in providing neuroprotection. Astrocytes can nurture surrounding neurons with substrates such as lactate and glutamine, while at the same time eliminating neurotransmitter glutamate from the synaptic cleft. The metabolic activity of glia can be assessed in vivo using nuclear magnetic resonance spectroscopy

    In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism

    Get PDF
    Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorporation into amino acid neurotransmitters such as glutamate (Glu), GABA and aspartate can be measured providing information on Krebs cycle flux and oxidative metabolism. Given the compartmentation of key enzymes such as pyruvate carboxylase and glutamine synthetase, the detection of label incorporation into glutamine indicated that neuronal and glial metabolism can be measured in vivo. The purpose of this paper is to provide a critical overview of these recent advances into measuring compartmentation of brain energy metabolism using localized in vivo 13C NMR spectroscopy. The studies reviewed herein showed that anaplerosis is significant in brain, as is oxidative ATP generation in glia and the rate of glial glutamine synthesis attributed to the replenishment of the neuronal Glu pool and that brain glycogen metabolism is slow under resting conditions. This new modality promises to provide a new investigative tool to study aspects of normal and diseased brain hitherto unaccessible, such as the interplay between glutamatergic action, glucose and glycogen metabolism during brain activation, and the derangements thereof in patients with hepatic encephalopathy, neurodegenerative diseases and diabetes

    In vivo Structural Imaging of the Cerebellum, the Contribution of Ultra-High Fields

    Get PDF
    This review covers some of the contributions to date from cerebellar imaging studies performed at ultra-high magnetic fields. A short overview of the general advantages and drawbacks of the use of such high field systems for imaging is given. One of the biggest advantages of imaging at high magnetic fields is the improved spatial resolution, achievable thanks to the increased available signal-to-noise ratio. This high spatial resolution better matches the dimensions of the cerebellar substructures, allowing a better definition of such structures in the images. The implications of the use of high field systems is discussed for several imaging sequences and image contrast mechanisms. This review covers studies which were performed in vivo in both rodents and humans, with a special focus on studies that were directed towards the observation of the different cerebellar layer

    1H NMR detection of vitamin C in human brain in vivo

    Get PDF
    Vitamin C (ascorbate) is well established as an essential nutrient that functions as an antioxidant. Since it is present in the human brain at detectable concentrations, this study was designed to detect and quantify ascorbate in the human brain in vivo using 1H NMR spectroscopy (MRS). Ascorbate was consistently detected in all five study subjects, and was measured using MEGA-PRESS difference editing. The in vivo resonance pattern was consistent with that of ascorbate based on position, line width, peak pattern, and relative intensity. Metabolites with a potential for coediting were assessed using phantom solutions. The putative resonances of myo-inositol, lactate, glycerophosphocholine, phosphocholine, and phosphoethanolamine were detected at positions distinct from those of ascorbate. This study represents the first in vivo detection of vitamin C in the human brain using 1H MRS. A concentration of 1.3 +/- 0.3 micromol/g (mean +/- SD, N = 4) was estimated

    Comparison of three commercially available radio frequency coils for human brain imaging at 3 Tesla

    Get PDF
    Objective: To evaluate a transverse electromagnetic (TEM), a circularly polarized (CP) (birdcage), and a 12-channel phased array head coil at the clinical field strength of B 0 = 3T in terms of signal-to-noise ratio (SNR), signal homogeneity, and maps of the effective flip angle α. Materials and methods: SNR measurements were performed on low flip angle gradient echo images. In addition, flip angle maps were generated for αnominal= 30° using the double angle method. These evaluation steps were performed on phantom and human brain data acquired with each coil. Moreover, the signal intensity variation was computed for phantom data using five different regions of interest. Results: In terms of SNR, the TEM coil performs slightly better than the CP coil, but is second to the smaller 12-channel coil for human data. As expected, both the TEM and the CP coils show superior image intensity homogeneity than the 12-channel coil, and achieve larger mean effective flip angles than the combination of body and 12-channel coil with reduced radio frequency power deposition. Conclusion: At 3T the benefits of TEM coil design over conventional lumped element(s) coil design start to emerge, though the phased array coil retains an advantage with respect to SNR performanc
    corecore