104 research outputs found

    Spatially resolved electron energy loss spectroscopy on n-type ultrananocrystalline diamond films

    Get PDF
    The addition of nitrogen to the synthesis gas during synthesis of ultrananocrystalline-diamond (UNCD) films results in films uniquely exhibiting very high n-type electrical conductivity even at ambient temperatures. This result is due to the formation of nanowires having elongated diamond core nanostructures and a sp2-bonded C sheath surrounding the core. The work presented here provides detailed confirmation of this important result through spatially resolved-electron energy loss spectroscopy. The direct observation of nitrogen incorporated in the sheath has been enabled. The incorporation of this nitrogen provides strong support to a plausible mechanism for the n-type conduction characteristic of the UNCD films

    Multiwavelength Raman spectroscopy of diamond nanowires present in n-type ultrananocrystalline films

    Get PDF
    Multiwavelength Raman spectroscopy is employed to investigate ultrananocrystalline diamond films deposited by the plasma enhanced chemical vapor deposition technique. Recently, we have shown that the addition of nitrogen in the gas source during synthesis induce the formation of diamond n-type films, exhibiting the highest electrical conductivity at ambient temperature. This point is related with the formation of elongated diamond nanostructures and the presence of sp2-bonded carbon in these films. The Raman results presented here confirm these aspects and provide a better and deeper understanding of the nature of these films and their related optical and electronic properties

    Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition

    Get PDF
    A processing route has been developed to grow bundles of carbon nanotubes on substrates from methane and hydrogen mixtures by microwave plasma-enhanced chemical vapor deposition, catalyzed by iron particles reduced from ferric nitrate. Growth takes place at about 900°C leading to nanotubes with lengths of more than 20 μm and diameters on the nanometer scale

    Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas

    Get PDF
    The transition from microcrystalline to nanocrystalline diamond films grown from Ar/H2/CH4 microwave plasmas has been investigated. Both the cross-section and plan-view micrographs of scanning electron microscopy reveal that the surface morphology, the grain size, and the growth mechanism of the diamond films depend strongly on the ratio of Ar to H2 in the reactant gases. Microcrystalline grain size and columnar growth have been observed from films produced from Ar/H2/CH4 microwave discharges with low concentrations of Ar in the reactant gases. By contrast, the films grown from Ar/H2/CH4 microwave plasmas with a high concentration of Ar in the reactant gases consist of phase pure nanocrystalline diamond, which has been characterized by transmission electron microscopy, selected area electron diffraction, and electron energy loss spectroscopy. X-ray diffraction and Raman spectroscopy reveal that the width of the diffraction peaks and the Raman bands of the as-grown films depends on the ratio of Ar to H2 in the plasmas and are attributed to the transition from micron to nanometer size crystallites. It has been demonstrated that the microstructure of diamond films deposited from Ar/H2/CH4 plasmas can be controlled by varying the ratio of Ar to H2 in the reactant gas. The transition becomes pronounced at an Ar/H2 volume ratio of 4, and the microcrystalline diamond films are totally transformed to nanocrystalline diamond at an Ar/H2 volume ratio of 9. The transition in microstructure is presumably due to a change in growth mechanism from CH3· in high hydrogen content to C2 as a growth species in low hydrogen content plasmas

    Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas

    Get PDF
    Nanocrystalline diamond films have been synthesized by microwave plasma enhanced chemical vapor deposition using N2/CH4 as the reactant gas without additional H2. The nanocrystalline diamond phase has been identified by x-ray diffraction and transmission electron microscopy analyses. High resolution secondary ion mass spectroscopy has been employed to measure incorporated nitrogen concentrations up to 8 ×1020 atoms/cm3. Electron field emission measurements give an onset field as low as 3.2 V/μm. The effect of the incorporated nitrogen on the field emission characteristics of the nanocrystalline films is discussed

    Bulk and surface thermal stability of ultra nanocrystalline diamond films with 10-30 nm grain size prepared by chemical vapor deposition

    Get PDF
    The thermal stability of nanocrystalline diamond films with 10-30 nm grain size deposited by microwave enhanced chemical vapor deposition on silicon substrate was investigated as a function of annealing temperature up to 1200&deg;C. The thermal stability of the surface-upper atomic layers was studied with near edge x-ray absorption fine structure (NEXAFS) spectroscopy recorded in the partial electron yield mode. This technique indicated substantial thermally induced graphitization of the film within a close proximity to the surface. While in the bulk region of the film no graphitization was observed with either Raman spectroscopy or NEXAFS spectroscopy recorded in total electron yield mode, even after annealing to 1200&deg;C. Raman spectroscopy did detect the complete disappearance of transpolyacetylene (t-PA)-like 1 and 3 modes following annealing at 1000&deg;C. Secondary ion mass spectroscopy, applied to investigate this relative decrease in hydrogen atom concentration detected only a &sim;30% decrease in the bulk content of hydrogen atoms. This enhanced stability of sp3 hybridized atoms within the bulk region with respect to graphitization is discussed in terms of carbon bond rearrangement due to the thermal decomposition of t-PA-like fragments. <br /

    Growth of (110) Diamond using pure Dicarbon

    Get PDF
    We use a density-functional based tight-binding method to study diamond growth steps by depositing dicarbon species onto a hydrogen-free diamond (110) surface. Subsequent C_2 molecules are deposited on an initially clean surface, in the vicinity of a growing adsorbate cluster, and finally, near vacancies just before completion of a full new monolayer. The preferred growth stages arise from C_2n clusters in near ideal lattice positions forming zigzag chains running along the [-110] direction parallel to the surface. The adsorption energies are consistently exothermic by 8--10 eV per C_2, depending on the size of the cluster. The deposition barriers for these processes are in the range of 0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies are smaller by 3 eV, but diffusion to more stable positions is feasible. We also perform simulations of the diffusion of C_2 molecules on the surface in the vicinity of existing adsorbate clusters using an augmented Lagrangian penalty method. We find migration barriers in excess of 3 eV on the clean surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier heights and pathways indicate that the growth from gaseous dicarbons proceeds either by direct adsorption onto clean sites or after migration on top of the existing C_2n chains.Comment: 8 Pages, 7 figure
    corecore