4 research outputs found

    Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits.

    Get PDF
    Shoot apical meristems are stem cell niches that balance proliferation with the incorporation of daughter cells into organ primordia. This balance is maintained by CLAVATA-WUSCHEL feedback signaling between the stem cells at the tip of the meristem and the underlying organizing center. Signals that provide feedback from organ primordia to control the stem cell niche in plants have also been hypothesized, but their identities are unknown. Here we report FASCIATED EAR3 (FEA3), a leucine-rich-repeat receptor that functions in stem cell control and responds to a CLAVATA3/ESR-related (CLE) peptide expressed in organ primordia. We modeled our results to propose a regulatory system that transmits signals from differentiating cells in organ primordia back to the stem cell niche and that appears to function broadly in the plant kingdom. Furthermore, we demonstrate an application of this new signaling feedback, by showing that weak alleles of fea3 enhance hybrid maize yield traits.The fea3-0 allele was kindly provided by Victor Shcherbak, Krasnodar Res. Inst. Agric., Russia. We acknowledge funding from a collaborative agreement with Dupont Pioneer, and from NSF Plant Genome Research Program grant # IOS-1238202 and MCB-1027445, and with the support of the Gatsby Charitable Foundation (GAT3395/PR4) and Swedish Research Council (VR2013-4632) to HJ, and "Next-Generation BioGreen 21 Program (SSAC, Project No. PJ01137901)" Rural Development Administration, Republic of Korea. We also thank Ulises Hernandez for assistance with cloning, Amandine Masson for assistance with peptide assays, and members of the Jackson lab for comments on the manuscript.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group

    On evaluating models in Computational Morphodynamics.

    No full text
    Recent advances in experimental plant biology have led to an increased potential to investigate plant development at a systems level. The emerging research field of Computational Morphodynamics has the aim to lead this development by combining dynamic spatial experimental data with computational models of molecular networks, growth, and mechanics in a multicellular context. The increased number of published models may lead to a diversification of our understanding of the systems, and methods for evaluating, comparing, and sharing models are main challenges for the future. We will discuss this problem using ideas originating from physics and use recent computational models of plant development as examples
    corecore