145 research outputs found
Calcospherite (Calcification Nodule) Size in the Short Rib Polydactyly Syndromes
The short rib polydactyly syndromes (SRP) are lethal neonatal skeletal dysplasias with a narrow chest, short limbs, and other abnormalities. Type II (Majewski) short rib polydactyly can be distinguished from the Type I/III (Saldino-Noonan) type on the basis of radiographic and histologic changes. Our previous transmission electron microscopic studies suggested unusual patterns of cartilage calcification in these syndromes. We evaluate calcification in the present study using scanning electron microscopy and quantitative morphometry of calcification regions digested to expose calcospherite nodules (calcification nodules), distinctive morphologic structures which form during cartilage calcification. Mean calcospherite area of the Majewski Type II SRP (3.5 ± 0.24 x 10-6 mm2 (3) (mean ± sem (n)) did not differ from normal control means (3.1 ± 0.5 x 10-6 mm2, (3)). The mean area for Type I/III, however, was significantly larger than both the control and Type II means (8.9 ± 1.16 x 10-6 mm2 (7), p=.001). This difference in calcospherite size adds a further differentiating feature between these two dysplasias
Alterations in osteoclast morphology following long-term 17beta-estradiol administration in the mouse
BACKGROUND: Although the role of the osteoclast in bone resorption is becoming better understood, much remains to be learned about osteoclastogenesis and the exact mechanism of action of anti-resorbing agents such as 17β-estradiol. This study investigated bone and morphologic osteoclast alterations following long-term estrogen administration to the B6D2F1 mouse. B6D2F1 mice aged 4-5 weeks were exposed to high levels of estrogen via implanted silastic tubing for at least 12 weeks; controls received empty tubing. Femurs of control and treated mice were assessed with radiology, quantitative histomorphometry and transmission electron microscopy. RESULTS: After 8 weeks of treatment, there was radiologic evidence of severe osteosclerosis and 86% of femoral marrow space was replaced with bone. After 12 weeks histologic studies of treated animals revealed that osteoclasts were positive for tartrate-resistant acid phosphatase but showed markedly abnormal ultrastructure which prevented successful bone resorption. CONCLUSIONS: Findings extend our understanding of osteoclast structure and function in the mouse exposed in vivo to high doses of estrogen. Ultrastructural examination showed that osteoclasts from estrogen-treated mice were unable to seal against the bone surface and were unable to form ruffled borders
Immunolocalization of RANKL is Increased and OPG Decreased During Dietary Magnesium Deficiency in the Rat
BACKGROUND: Epidemiological studies have linked low dietary magnesium (Mg) to low bone mineral density and osteoporosis. Mg deficiency in animal models has demonstrated a reduction in bone mass and increase in skeletal fragility. One major mechanism appears to be an increase in osteoclast number and bone resorption. The final pathway of osteoclastogenesis involves three constituents of a cytokine system: receptor activator of nuclear factor kB ligand (RANKL); its receptor, receptor activator of nuclear factor kB (RANK); and its soluble decoy receptor, osteoprotegerin (OPG). The relative presence of RANKL and OPG dictates osteoclastogenesis. The objective of this study was to assess the presence of RANKL and OPG in rats on a low Mg diet. METHODS: RANKL and OPG were assessed by immunocytochemistry staining in the tibia for up to 6 months in control rats on regular Mg intake (0.5 g/kg) and experimental rats on reduction of dietary Mg (.04%, 25% and 50% of this Nutrient Requirement). RESULTS: At all dietary Mg intakes, alteration in the presence of immunocytochemical staining of RANKL and OPG was observed. In general, OPG was decreased and RANKL increased, reflecting an alteration in the RANKL/OPG ratio toward increased osteoclastogenesis. CONCLUSION: We have, for the first time demonstrated that a reduction in dietary Mg in the rat alters the presence of RANKL and OPG and may explain the increase in osteoclast number and decrease in bone mass in this animal model. As some of these dietary intake reductions in terms of the RDA are present in a large segment of or population, Mg deficiency may be another risk factor for osteoporosis
Senescent vs. non-senescent cells in the human annulus in vivo: Cell harvest with laser capture microdissection and gene expression studies with microarray analysis
<p>Abstract</p> <p>Background</p> <p>Senescent cells are well-recognized in the aging/degenerating human disc. Senescent cells are viable, cannot divide, remain metabolically active and accumulate within the disc over time. Molecular analysis of senescent cells in tissue offers a special challenge since there are no cell surface markers for senescence which would let one use fluorescence-activated cell sorting as a method for separating out senescent cells.</p> <p>Methods</p> <p>We employed a novel laser capture microdissection (LCM) design to selectively harvest senescent and non-senescent annulus cells in paraffin-embedded tissue, and compared their gene expression with microarray analysis. LCM was used to separately harvest senescent and non-senescent cells from 11 human annulus specimens.</p> <p>Results</p> <p>Microarray analysis revealed significant differences in expression levels in senescent cells vs non-senescent cells: 292 genes were upregulated, and 321 downregulated. Genes with established relationships to senescence were found to be significantly upregulated in senescent cells vs. non-senescent cells: p38 (MPAK14), RB-Associated KRAB zinc finger, Discoidin, CUB and LCCL domain, growth arrest and DNA-damage inducible beta, p28ING5, sphingosine-1-phosphate receptor 2 and somatostatin receptor 3; cyclin-dependent kinase 8 showed significant downregulation in senescent cells. Nitric oxidase synthase 1, and heat shock 70 kDa protein 6, both of which were significantly down-regulated in senescent cells, also showed significant changes. Additional genes related to cytokines, cell proliferation, and other processes were also identified.</p> <p>Conclusions</p> <p>Our LCM-microarray analyses identified a set of genes associated with senescence which were significantly upregulated in senescent vs non-senescent cells in the human annulus. These genes include p38 MAP kinase, discoidin, inhibitor of growth family member 5, and growth arrest and DNA-damage-inducible beta. Other genes, including genes associated with cell proliferation, extracellular matrix formation, cell signaling and other cell functions also showed significant modulation in senescent vs non-senescent cells. The aging/degenerating disc undergoes a well-recognized loss of cells; understanding senescent cells is important since their presence further reduces the disc's ability to generate new cells to replace those lost to necrosis or apoptosis.</p
Systemic neutralization of IL-17A significantly reduces breast cancer associated metastasis in arthritic mice by reducing CXCL12/SDF-1 expression in the metastatic niches
BACKGROUND: IL-17A is a pro-inflammatory cytokine that is normally associated with autoimmune arthritis and other pro-inflammatory conditions. Recently, IL-17A has emerged as a critical factor in enhancing breast cancer (BC)-associated metastases. We generated immune competent arthritic mouse models that develop spontaneous BC-associated bone and lung metastasis. Using these models, we have previously shown that neutralization of IL-17A resulted in significant reduction in metastasis. However, the underlying mechanism/s remains unknown. METHODS: We have utilized two previously published mouse models for this study: 1) the pro-arthritic mouse model (designated SKG) injected with metastatic BC cell line (4T1) in the mammary fat pad, and 2) the PyV MT mice that develop spontaneous mammary gland tumors injected with type II collagen to induce autoimmune arthritis. Mice were treated with anti-IL-17A neutralizing antibody and monitored for metastasis and assessed for pro-inflammatory cytokines and chemokines associated with BC-associated metastasis. RESULTS: We first corroborate our previous finding that in vivo neutralization of IL-17A significantly reduced metastasis to the bones and lungs in both models. Next, we report that treatment with anti-IL17A antibody significantly reduced the expression of a key chemokine, CXCL12 (also known as stromal derived factor-1 (SDF - 1)) in the bones and lungs of treated mice. CXCL12 is a ligand for CXCR4 (expressed on BC cells) and their interaction is known to be critical for metastasis. Interestingly, levels of CXCR4 in the tumor remained unchanged with treatment. Consequently, protein lysates derived from the bones and lungs of treated mice were significantly less chemotactic for the BC cells than lysates from untreated mice; and addition of exogenous SDF-1 to the lysates from treated mice completely restored BC cell migration. In addition, cytokines such as IL-6 and M-CSF were significantly reduced in the lung and bone lysates following treatment. The data presented suggests that systemic neutralization of IL-17A can block the CXCR4/SDF-1 signaling pathway by reducing the expression of SDF-1 in the metastatic niches and significantly reducing metastasis in both mouse models. CONCLUSION: In our model, neutralization of IL-17A regulates SDF-1 expression in the metastatic niches either directly or indirectly via reducing levels of IL-6 and M-CSF
Observations on morphologic changes in the aging and degenerating human disc: Secondary collagen alterations
BACKGROUND: In the annulus, collagen fibers that make up the lamellae have a wavy, planar crimped pattern. This crimping plays a role in disc biomechanical function by allowing collagen fibers to stretch during compression. The relationship between morphologic changes in the aging/degenerating disc and collagen crimping have not been explored. METHODS: Ultrastructural studies were performed on annulus tissue from 29 control (normal) donors (aged newborn to 79 years) and surgical specimens from 49 patients (aged 16 to 77 years). Light microscopy and specialized image analysis to visualize crimping was performed on additional control and surgical specimens. Human intervertebral disc tissue from the annulus was obtained in a prospective morphologic study of the annulus. Studies were approved by the authors' Human Subjects Institutional Review Board. RESULTS: Three types of morphologic changes were found to alter the crimping morphology of collagen: 1) encircling layers of unusual matrix disrupted the lamellar collagen architecture; 2) collagen fibers were reduced in amount, and 3) collagen was absent in regions with focal matrix loss. CONCLUSIONS: Although proteoglycan loss is well recognized as playing a role in the decreased shock absorber function of the aging/degenerating disc, collagen changes have received little attention. This study suggests that important stretch responses of collagen made possible by collagen crimping may be markedly altered by morphologic changes during aging/degeneration and may contribute to the early tissue changes involved in annular tears
Expression and localization of estrogen receptor-β in annulus cells of the human intervertebral disc and the mitogenic effect of 17-β-estradiol in vitro
BACKGROUND: Recent evidence suggests that estrogens exert effects in different tissues throughout the body, and that the estrogen receptor β (ERβ) may be important for the action of estrogen (17-β-estradiol) on the skeleton. The cellular localization of ERβ in the human intervertebral disc, however, has not yet been explored. METHODS: Human disc tissue and cultured human disc cells were used for immunocytochemical localization of ERβ. mRNA was isolated from cultured human disc cells, and RT-PCR amplification of ERβ was employed to document molecular expression of this receptor. Cultured human disc cells were tested to determine if 17-β-estradiol stimulated cell proliferation. RESULTS: In this report data are presented which provide evidence for ERβ gene expression in human intervertebral disc cells in vivo and in vitro. Culture of annulus cells in the presence of 10(-7) M 17-β-estradiol significantly increased cell proliferation. CONCLUSIONS: These data provide new insight into the biology of cells in the annulus of the intervertebral disc
- …