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Abstract

Background: IL-17A is a pro-inflammatory cytokine that is normally associated with autoimmune arthritis and other
pro-inflammatory conditions. Recently, IL-17A has emerged as a critical factor in enhancing breast cancer
(BC)-associated metastases. We generated immune competent arthritic mouse models that develop spontaneous
BC-associated bone and lung metastasis. Using these models, we have previously shown that neutralization of
IL-17A resulted in significant reduction in metastasis. However, the underlying mechanism/s remains unknown.

Methods: We have utilized two previously published mouse models for this study: 1) the pro-arthritic mouse model
(designated SKG) injected with metastatic BC cell line (4T1) in the mammary fat pad, and 2) the PyV MT mice that
develop spontaneous mammary gland tumors injected with type II collagen to induce autoimmune arthritis. Mice
were treated with anti-IL-17A neutralizing antibody and monitored for metastasis and assessed for pro-inflammatory
cytokines and chemokines associated with BC-associated metastasis.

Results: We first corroborate our previous finding that in vivo neutralization of IL-17A significantly reduced metastasis
to the bones and lungs in both models. Next, we report that treatment with anti-IL17A antibody significantly reduced
the expression of a key chemokine, CXCL12 (also known as stromal derived factor-1 (SDF− 1)) in the bones and lungs
of treated mice. CXCL12 is a ligand for CXCR4 (expressed on BC cells) and their interaction is known to be critical for
metastasis. Interestingly, levels of CXCR4 in the tumor remained unchanged with treatment. Consequently, protein
lysates derived from the bones and lungs of treated mice were significantly less chemotactic for the BC cells than
lysates from untreated mice; and addition of exogenous SDF-1 to the lysates from treated mice completely restored BC
cell migration. In addition, cytokines such as IL-6 and M-CSF were significantly reduced in the lung and bone lysates
following treatment. The data presented suggests that systemic neutralization of IL-17A can block the CXCR4/SDF-1
signaling pathway by reducing the expression of SDF-1 in the metastatic niches and significantly reducing metastasis
in both mouse models.

Conclusion: In our model, neutralization of IL-17A regulates SDF-1 expression in the metastatic niches either directly or
indirectly via reducing levels of IL-6 and M-CSF.
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Background
By the year 2013, an estimated 750,000 women will die
from breast cancer (BC) worldwide. Ninety percent of
these deaths will be due to metastatic disease [1]. The
most common site of metastasis is the bones and the
lungs. Metastatic BC especially bone disseminated BC
remains incurable [2]. Metastasis is regulated not only
by intrinsic genetic changes in malignant cells, but also
by the host microenvironment. Several studies have
demonstrated that sites of chronic inflammation are often
associated with establishment and growth of various types
of malignancies [2,3]. A common inflammatory condition
in humans is autoimmune arthritis (AA) with inflammation
and deformity of the joints and increased cellular infiltra-
tion and inflammation in the lungs [4]. Several underlying
molecular processes that characterize AA are also asso-
ciated with cancer progression and metastasis. Epidemi-
ologic studies indicate that BC patients with AA have
poor prognosis and higher mortality rate compared to BC
patients without AA [5]. To understand the molecular
mechanisms and factors that facilitate BC-associated
metastasis in arthritic conditions we have generated
couple of models: one in which the mice are pro-arthritic
and are later challenged to develop metastatic BC; and
second in which the mice develop spontaneous BC first
and then induced to develop arthritis [6-8]. Both mouse
models are immune competent and develop significant
levels of bone and lung metastasis. It is important to note
here that without arthritis, very few mice develop lung
and bone metastasis. Thus, these mice are ideally suited
to study bone and lung metastasis that develops from
the primary mammary gland tumors.
Using these models, we have previously reported that

the inflammatory microenvironment caused by AA serves
as a chemo attractant for recruitment, retention, and
proliferation of BC cells in the bones and lungs [6-8].
We have identified interleukin-17A (IL-17A) as one of the
critical pro-inflammatory cytokines within the metastatic
niche and in the circulation, contributing to the enhanced
metastasis. IL-17A mediates its pro-inflammatory effects
by stimulating the release of multiple other cytokines such
as IL-6, IL-8, and G-CSFs from epithelial, endothelial,
and fibroblastic cells [9]. IL-17A is also associated with
increased angiogenesis, proliferation, and metastasis in
breast and other cancers [6,7,10]. Blocking IL-17A with
a neutralizing antibody significantly reduced BC asso-
ciated metastasis in both models [6,7].
In this study, we investigated the underlying mechanism/

s of how systemic neutralization of IL17A inhibits/reduces
metastasis. We report that IL-17A neutralization is highly
effective in down- regulating the expression of CXCL12/
SDF-1 in the metastatic niches. This in turn blocks the
migration of the CXCR4-positive BC cells towards the
metastatic niches. Data presented here shows that treatment
with anti-IL-17A antibody significantly reduces metastasis
to the bone and lungs in the two arthritic-BC mouse models
by regulating the CXCR4/SDF-1 axis necessary for me-
tastases. The study is of high significance since thera-
peutic strategies to block the CXCR4/SDF-1 interaction
is being actively pursued [11-13].

Methods
Ethics statement
All experimental procedures were conducted according to
Institutional Animal Care and Use Committee (IACUC)
guidelines and the IACUC Committee of University of
North Carolina at Charlotte (UNCC) has specifically
approved this study (IACUC ID: 08–036.0 and 11–015.0).
All mice were bred and maintained in specific pathogen-
free conditions.

Cell lines
The 4 T1 cells were purchased from The American
Type Cell Culture Collection (Manassas, VA). Cells were
maintained in complete RPMI [6]. The 4 T1 cells had stable
expression of green fluorescent protein (4 T1-GFP). 4 T1
tumors is known to resemble human late stage metastatic
BC [14-16]. The PyV MT cell lines were generated from
PyV MT tumors and cultured as previously described in
complete DMEM [7].

Mice and treatment schema
SKG mice have been established from a closed breeding
colony of Balb/C mice [17,18]. To test the efficacy of
anti-IL-17A antibody treatment on BC associated me-
tastasis, three month old SKG mice were injected with
1 × 105 4 T1-GFP cells (in 100 μl of PBS) in the mam-
mary fat pad. When the tumors were ~5 mm in size
(post ~6 days of 4 T1 injections), four intraperitoneal (ip)
injections of 5 μg/ml of anti-IL17 antibody (Cat#560268;
BD Pharmingen, San Diego, CA, USA;) or rat IgG isotype
control antibody (Cat# 554682, BD Pharmingen) was
administered once a week. 1XPBS was used as the solvent.
Untreated 4 T1-tumor bearing SKG mice served as con-
trols. The mice were euthanized 24 hours after the last in-
jections at ~35 days post tumor challenge.
PyV MT oncogenic mice were originally a gift from Dr.

W. J. Muller (McGill University, Toronto, Canada) [19].
The PyV MT mice were bred to be congenic on the
C57BL/6 background and have been used in several of our
prior publications [7,20-23]. At 12 weeks of age, PyV MT
mice were injected intradermally with 50 uls of 2 mg/ml
CII (Cat#804002-Lyo, MD Biosciences, St. Paul, MN, USA)
in CFA (Difco laboratories, Michigan, USA) approximately
1.5cms distal from the base of the tail. Approximately
60% of mice develop arthritis within 15–30 days post
collagen injection [24,25]. Four weeks post CII injection
(at 16-weeks of age), four i.p injections of 5 μg/ml of
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anti-IL17 antibody or control IgG antibody (Cat#560268;
BD Pharmingen, San Diego, CA) once every two weeks
was administered. The mice were euthanized 24 hours
after the last injections at ~23 weeks of age. Thus, mice
received a total of 4 injections of the antibody. Untreated
PyV MT mice served as controls.

Measurement of SDF-1 and IL-17A levels
SDF-1/CXCL12 levels were measured in the lung and bone
lysates by a specific mouse Elisa kit (Cat# CKM061, Cell
Sciences, Canton, MA). IL-17A levels were determined
using a specific mouse Elisa kit (Cat#88-7371; eBioscience,
San Diego, CA, USA). The limit of detection for the mouse
CXCL12/SDF-1 Elisa kit from Cell Sciences, Cat#CKM061
is 9.38 pg/ml to 600 pg/ml. The limit of detection for the
mouse IL17A ELISA kit from eBiosciences, Cat#88-7371 is
4 pg/ml to 500 pg/ml. 300 ug of tumor, lung and bone
whole tissue lysates were used and manufacturer recom-
mended protocols were followed. Results are expressed as
picograms/ml. Lysate preparation: Briefly, lung tissue was
collected in complete lysis buffer (20 mmol/L HEPES,
150 mmol/L NaCl, 1%Triton X100, and 2 mmol/L EDTA)
supplemented with serine protease inhibitor (Complete
inhibitor cocktail; Roche, Indianapolis, IN) and phosphatase
inhibitor cocktail (Sigma-Aldrich,Missouri, USA). The
tissues were homogenized using the IKA T25 digital
ultra Turrax homogenizer (IKA, Wilmington, USA). After
centrifugation, the supernatant was collected and used
as the source of the protein lysate. Bones were collected
in the same buffer and stored at −80°C. When ready to
isolate protein, bones were placed on dry ice, cleared of all
surrounding soft tissue and pulverized in liquid nitrogen
using a mortar and pestle. The powdered bone was further
homogenized in complete lysis buffer, centrifuged at
13000 rpm for 10 minutes and supernatant collected.
A standard BCA assay was used to determine protein
concentration (Cat#23225, Pierce BCA protein assay
kit, Thermo Scientific, Rockford, USA).

Antibodies for western blotting
CXCR4 antibody was used at a concentration of 1ug/ml
(Cat#ab2074, Abcam, Cambridge, MA 02139) and sec-
ondary donkey anti-rabbit IgG HRP at 1:5000 dilution
(Cat#sc-2313, Santa Cruz Biotechnology, Santa Cruz, CA).
β-actin (Cat#sc-47778) antibody was used at 1:500 dilution
and secondary anti-mouse IgG HRP (Cat#sc-2314) at 1:2000
dilution (Santa Cruz Biotechnology, Santa Cruz, CA).
β-actin expression was used to confirm equal protein
loading on the SDS-PAGE gels.

Histology
Lung and bone sections were processed as previously
described [6,7]. Paraffin embedded blocks were prepared
and 4-micron thick sections were cut for hematoxylin
eosin (H&E), SDF-1, and pancytokeratin staining. The
SDF-1 (Cat#sc-74271) and pancytokeratin antibodies were
purchased from Santa Cruz Biotechnology and used at 1:50
dilution following the same protocol as described in our
previous publications [6,7] followed by DAKO anti-mouse
secondary antibody (Cat# P0447, 1:100 dilution; Dako
North America, Carpinteria, CA, USA).

Image acquisition and analysis
All bright field images were taken using the Olympus DP71
light microscopy with Olympus BX60 camera (U-ND25-2,
Olympus; Melville, NY) at magnifications shown in the
figure legend. The images were analyzed by Caresbio
Laboratory, Shelton, CT, USA. Image analysis algorithms
were applied to the images generated from microscopic
slides of tissues stained with DAB and hematoxylin. An al-
gorithm was applied to the Red-Green-Blue (RGB)-filtered
grayscale values from images. Images were analyzed
using the image analysis software, MATLAB (R2011b,
MathWorks). This provides the option for separation of
DAB only- and double-stained areas from hematoxylin
only- stained areas by means of subject specific threshold-
ing. A good separation of DAB- and double-stained pixels
from hematoxylin-stained pixels was achieved. Automatic
background subtraction was performed applying median
filters only. Significant differences in relative areas stained
and mean specific intensity for the stains between control
and treatment groups in mouse tissue were calculated.

Invasion assays
4 T1 or PyV MT cells in serum free media (50,000 cells)
were plated over transwell inserts (BD Biosciences, San
Jose, CA), pre-coated with reduced growth factor matrigel
(BD Biosciences, San Jose, CA, USA) and were permitted
to invade towards lung and bone lysates (500 ug protein)
contained in the bottom chamber for 24 hours. Percent in-
vasion was calculated as absorbance of samples/absorbance
of controls × 100 [6,7,26,27]. We added neutralizing anti-
CXCR4 antibody (Cat#247506, R&D Systems, Minneapolis,
MN) to tumor cells at 10ug/ml or recombinant mouse
SDF-1 to the lower chamber at 0.6 ng/ml (Cat#460-SD,
R&D Systems, Minneapolis, MN) and analyzed the inva-
sion of BC cells.

X-Ray imaging
The Pix array 100 x-ray machine (Bi Optic Inc, Santa
Clara, CA, USA) was used for bone imaging as previously
described [6-8,28].

Measurement of cytokines
The RayBio® Custom Mouse Cytokines Antibody Array
kit was purchased from Ray Biotech (Norcross, GA, USA)
and used according to the manufacturer’s instructions.
This is an immunoblot-based kit. The array of cytokines
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included in the study template was: IL-17A, IL-6, M-CSF,
TNF-α, IGF-II, IL-4, IL-1B, Pro-MMP9, VEGF and osteo-
protegerin. To measure the cytokines in the lung and bone
microenvironment, 300ug of protein lysate was used. The
densitometric analyses of immunoblots were performed
using NIH Image J software (obtained from the NIH Web
site: http://rsb.info.nih.gov/nih-image). Results are presented
as mean values of arbitrary densitometric units corrected for
background intensity and normalized using pre-determined
controls (provided by the manufacturer).

Statistical analysis
Data were analyzed using the GraphPad software. Results
are expressed as mean ± s.e.m and are representative of
greater than or equal to 3 replicate experiments. We used
a one-way ANOVA with Tukey to compare all groups
to each other. Comparison of groups was done by
using 2-way ANOVA followed by the Bonferroni post-
test for multiple comparisons. Student’s t-test was used
for comparing the level of significance between two ex-
perimental groups.
For Figure 1A and C and Figure 2A and B, Minitab

was used to conduct the statistical test based on a normal
approximation for percentage differences.

Result
Significant reduction in metastasis in the 4 T1- tumor
bearing SKG mice and the arthritic PyV MT mice treated
with anti-IL-17A antibody
We selected two models to test the efficacy of the anti-IL-
17A antibody treatment on BC-associated bone and lung
metastasis: 1) the SKG mice challenged with 4 T1 tumors
and 2) the PyV MT mice induced with CII. We selected
only the arthritic models because very few non-arthritic
tumor-bearing mice (0–3 mice out of 10) develop bone or
lung metastasis as compared to their arthritic counterparts
(5–9 mice out of 10) (Figures 1A and B & 2A and B).
In the 4 T1-tumor bearing SKG mice, data demonstrates

a significant reduction in the percent of mice that develop
bone and lung metastasis when treated with anti-IL17A
antibody compared to control mice (80-90% of control
mice develop metastasis versus only 40-50% of treated mice
develop metastasis) (Figure 1A and C). Also shown are
representative images of a) GFP positive lesions in the
lungs (Figure 1B (i-iii)), b) radiographic metastatic lesions
in the bone (Figure 1D (i-iii)), and c) pancytokeratin
brown staining representing epithelial cell lesions in
sections of bone confirming metastasis (Figure 1E (i-iii)).
In addition, densitometric analysis was performed for pan-
cytokeratin IHC images and the data is tabulated in
Table 1. Arrows in Figure 1D (i and ii) point to a meta-
static site in the proximal humerus; note the promin-
ent lucency in the proximal region, reflecting extensive
bone loss at this site.
The effect of the anti-IL-17A antibody treatment on
primary tumors showed a small but significant reduction
in tumor size as previously published [6] and shown as
Additional file 1: Figure S1A.
In the arthritic PyV MT mice, similar results were

observed. Treatment with anti-IL-17A showed a significant
decrease in the percent of mice that developed metastasis
(Figure 2A and B). Data shows that ~70% (7 out of 10) of
control mice developed lung metastasis and 50% (5 out of
10) developed bone metastasis (Figure 2A and B). When
treated with anti-IL-17A antibody, only 40% (4 out 10) and
30% (3 out of 10) developed lung and bone metastasis
respectively (Figure 2A and B). Representative H&E
staining confirming metastatic lesion in the lung is
shown in Figure 2Ci-iii while representative radio-
graphic images of the bone lesions and pancytokeratin
staining confirming metastasis in sections of the bone
is shown in Figure 2Di-iii and Figure 2Ei-iii (for lung)
and 4 (for bone). In addition, densitometric analysis
was performed for pancytokeratin IHC images and the
data is tabulated in Table 2.
Treatment with anti-IL-17A antibody had no effect on

the primary tumor burden in the arthritic PyV MT mice
(Additional file 1: Figure S1B). Thus, the study focused on
the effect of anti-IL-17A antibody treatment on metastasis.

Significant decrease in the expression of pro-inflammatory
cytokines in treated mice
To determine if treatment reduced IL-17A levels within the
tumor and metastatic niches, we evaluated the levels of
IL-17A using an ELISA. Compared to the control group,
the level of IL-17A in the tumor of SKG mice treated with
anti-IL-17A antibody was significantly lower (Figure 3A).
Level of IL-17A in the lungs and bones was also signifi-
cantly reduced as compared to control mice (Figure 3B and
C respectively) with levels as low as seen in SKG mice
with no tumors (Figure 3B and C). Similarly, we observed
a significant decrease in IL-17A levels in the tumors, lungs
and bones of the PyV MT mice treated with anti-IL-17A
antibody compared to the control groups (Figure 3D, E
and F respectively). Non-arthritic PyV MT mice served
as another control.
Since IL-17A mediates its downstream effects by stimulat-

ing the release of multiple other cytokines [9], we examined
which factors in the bone and lung may be influenced by
anti-IL-17A antibody treatment. In both the SKG and PyV
MT mice, multiple cytokine array analyses showed a signifi-
cant reduction in the levels of IL-6 and M-CSF in addition
to reduction in IL-17A levels in treated versus control mice
(Figure 3G and H for SKG mice and Figure 3I and J for PyV
MT mice). The array of cytokines included IL-17A, IL-6,
M-CSF, TNF-α, IGF-II, IL-4, IL-1B, Pro-MMP9, VEGF and
osteoporotegerin. None of the other cytokines showed sig-
nificant differences.
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Figure 1 Treatment with anti-IL17A significantly reduced lung and bone metastasis in SKG mice orthotopically injected with GFP
positive 4 T1 BC cells. A: Percentage of lung metastasis in 4 T1 tumor-bearing SKG mice ± treatment and in 4 T1 tumor-bearing non-arthritic
Balb/C mice. Statistical test based on a normal approximation: The difference between untreated and IgG treated versus anti-IL-17 treated is
significant (*p = 0.006) and difference between untreated SKG + 4 T1 versus Balb/C + 4 T1 is also significant (**p = 0.001). Bi-iii: Representative
images of GFP positive 4 T1 cells in lungs with no treatment (i), control IgG antibody treatment (ii) or anti-IL17A antibody treatment (iii).
C: Percentage of bone metastasis in 4 T1 tumor-bearing SKG mice ± treatment and in 4 T1 tumor-bearing non-arthritic Balb/C mice. Assuming
normal approximation, the difference between IgG control and anti- IL-17 treated group is significant (*p = 0.03) and difference between
untreated SKG + 4 T1 and Balb/C + 4 T1 is also significant (**p = 0.001). Significance was not reached between untreated SKG + 4 T1 and IL-17A
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images of metastatic bone lesions in 4 T1 tumor bearing SKG mice with no treatment (i) 4 T1 tumor bearing SKG mice treated with control IgG
antibody (ii) or anti-IL-17A antibody treatment (iii) Arrows point to a metastatic site in the proximal humerus; note the prominent lucency in the
proximal region, reflecting extensive bone loss at this site . (A-D: N = 10 mice). Ei-iii: Representative images of pancytokeratin staining of bone
tissue to confirm metastasis in 4 T1 tumor bearing SKG mice with no treatment (i) 4 T1 tumor bearing SKG mice treated with control IgG
antibody (ii) or anti-IL-17A antibody treatment (iii).
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Reduced SDF-1 (CXCL12) expression in lungs and bones
of treated mice
BC metastasis is known to be facilitated by the interaction
of the chemokine SDF − 1/CXCL12 with its ligand CXCR4
[12]. Thus, we first investigated if anti-IL-17A antibody
treatment affects the expression of SDF-1 in the metastatic
niches. We observed a significant reduction in SDF-1 levels
by specific ELISA in the lung and bone lysates of the
treated versus control mice (Figure 4A and B respectively).
Non-tumor bearing SKG mice were included in the study
as control. Data clearly suggests that when SKG mice were
induced to develop tumors, the level of SDF-1 significantly
increased in the lungs and that treatment with anti-IL-17A
antibody brought the levels back down to the non-tumor
bearing levels (Figure 4A). Similarly, in the bones, the level
of SDF-1 was significantly decreased with anti-IL-17A



Table 1 Densitometry analysis of the pancytokeratin
expression on the bones of the representative images
from Figure 1 Ei-iii

IntDen StdDev %Area

SKG + BC + Untreated 2326.73 20.57 7.34

SKG + BC + IgG 3830.90 20.4 9.65

SKG + BC + anti-IL-17A 964.780* 18.67 1.19

(i) 4 T1 tumor bearing SKG mice with no treatment; (ii) 4 T1 tumor bearing
SKG mice treated with control IgG antibody or (iii) with anti-IL-17A antibody
(*P < 0.01: SKG + BC + anti-IL-17A against all other groups)
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treatment (Figure 4B). Control non-arthritic Balb/C mice
have low levels of SDF-1 (data not shown: 26.8 pg/ml and
64.11 pg/ml in the bone and lung lysate respectively).
The data was further confirmed by immunohistochemistry
(IHC) staining of lung and bone tissue sections. Repre-
sentative images of lung and bone sections are shown
in Figures 4 Ci-iii and Di-iii respectively. In addition,
densitometric analysis was performed for all IHC im-
ages and the data is tabulated in Table 3 (for lung) and
Table 4 (for bone). It is apparent from the data that
non-arthritic Balb/C mice have low expression of SDF-
1 (Figure 4Cii and Dii) while SKG mice without any
tumor have elevated levels of SDF-1 as noted by ELISA
(Figure 4A&B) and by IHC (Figure 4Ciii and Diii and
Table 3). This suggests that SDF-1 expression increases
with induction of arthritis prior to tumor development.
Similar results were observed in the PyV MT mice

where the level of SDF-1 was significantly increased
when mice were induced with CII to develop arthritis
(Figure 4E and F). However, treatment with anti-IL-17A
antibody completely reversed the effect of CII and reduced
the level of SDF-1 to that of non-arthritic mice in the lung
and bone (Figures 4E and F respectively).
To reconfirm that anti-IL-17A treatment indeed reduces

the level of SDF-1 in the arthritic mice prior to the develop-
ment of tumor, we treated non-tumor bearing arthritic mice
(C57BL/6 mice injected with CII) with the anti-IL-17A anti-
body. We found that anti-IL-17A antibody treatment indeed
reduces the CII-induced SDF-1 levels in the bone and lung
prior to tumor development (Additional file 2: Table S1).
The data therefore suggests that treatment with anti-IL-17A
antibody reduces the level of SDF-1 first which subsequently
Table 2 Densitometry analysis of the pancytokeratin
expression on the bones of the representative images
from Figure 2 Ei-iiix

IntDen StdDev %Area

PyV MT with no AA 928.63* 20.46 0.73

PyV MT + CII + IgG 2188.64 19.78 14.09

PyV MT + CII + anti-IL-17A 889.44* 20.36 0.68

(i) PyV MT mice with no AA; (ii) PyV MT mice with AA treated with control IgG
antibody or (iii) with anti-IL-17A antibody. (*P < 0.01: PyV MT and PyV MT + CII +
anti-IL-17A against PyV MT + CII + IgG).
reduces the migration of the CXCR4+ BC cells to the bones
and lungs.
Next, we assessed the expression of CXCR4 on the

tumors dissected from the control and treated mice by
western blotting. No change in the CXCR4 expression
was observed in the 4 T1 or the PyV MT tumors with
treatment (Figure 5A and B respectively). N = tumors
from 3 individual mice are shown. We have also shown
as Additional file 3: Figure S2, the entire western blot
image of CXCR4 expression in tumors from Figure 5A
and B. The appropriate size for CXCR4 is 43 KD shown
in Figure 5.

Treatment with anti-IL-17A antibody significantly reduces the
chemotactic potential of lung and bone lysates for BC cells
It is well established that CXCR4+ cancers metastasize to
the distant organs in a CXCL12/SDF-1-dependent manner
[29,30,31]. Since we observed that the level of SDF-1 was
significantly reduced with anti-IL-17A antibody treatment,
we conducted an in vitro trans-well Boyden chamber
assay with the bone or lung lysate in the bottom chamber
and the 4 T1 or PyV MT tumor cells in the top chamber.
There was a significant decrease in the migration of 4 T1
cells towards the lung (Figure 5C) and bone (Figure 5D)
lysates derived from treated mice (Figure 5C and D bar# 3)
as compared to the lysates derived from control mice
(Figure 5C and D bar# 1). Similarly, migration of PyV
MT tumor cells towards the lung (Figure 5E) and bone
(Figure 5F) lysates from treated mice was significantly
lower compared to migration towards control lysate
(Figure 5E and F bar# 3 compared to bar #1).
Further, we demonstrate that addition of recombinant

SDF-1 to the lung and bone lysates in the lower chamber
reversed the effect of anti-IL-17A treatment and signifi-
cantly increased the migration of the 4 T1 and PyV MT
tumor cells towards the lower chamber (compare bar# 3
to bar# 4 in Figures 5C-F). Finally, we tested if blocking
CXCR4 would have a similar effect. Data demonstrates that
adding anti-CXCR4 neutralizing antibody to the 4 T1 and
PyV MT tumor cells in the upper chamber had some effect
on % migration, but in most instances the difference did
not reach statistical significance (Figures 5C-E bar# 1 versus
bar# 5, and Figures 5C-F bar# 3 versus bar# 6). However, in
one instance, with PyV MT tumor cells treated with anti-
CXCR4 antibody, there was a significant drop in % invasion
towards bone lysate. (Figure 5F bar# 1 versus bar# 5).
Taken together our data suggests that in arthritic condi-

tion, IL-17A blockade reduces BC-associated metastasis by
specifically reducing SDF-1 levels in the metastatic niches
and thereby affecting their chemotactic potential.

Discussion
Previously we established that the PyV MT mice that
develop spontaneous mammary gland tumors develop
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severe bone and lung metastasis when induced with
CII. If not induced with CII, these mice do not develop
bone metastasis while 50% of CII induced PyV MT mice
develop bone metastasis [6-8] and Figure 2B). Similarly,
only 20-30% of PyV MT mice without CII develop lung
metastasis but when induced with CII, ~80% of the mice
present with lung metastasis [6-8] and Figure 2A. The
primary tumors are also larger in the arthritic PyV MT
mice [7]. Correspondingly, in the pro-arthritic SKG mice
(which is in the Balb/C background), establishment of the
4 T1 tumors in the mammary fat pad gives rise to bone
metastasis in 80-90% of the mice [6,8] and Figure 1B.
In contrast, 30% of the Balb/C mice (which are not
pro-arthritic) bearing the 4 T1 tumors develop bone
metastasis [6,8] and Figure 1B. With regards to lung
metastasis, 30% of 4 T1 tumor-bearing Balb/C mice
develop lung metastasis while the same 4 T1 tumors
generate lung metastasis in 90% of pro-arthritic SKG
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Figure 4 Significant down-regulation of SDF-1 (CXCL12) expression in the metastatic niches. A and B: Levels of SDF-1 by ELISA in the lung
(A) and bone (B) lysate of SKG with no tumor, 4 T1 tumor bearing SKG mice treated with control or anti-IL-17A antibody (*P < 0.05) (N = 3 mice).
The limit of detection for mouse SDF-1 is 9.38 pg/ml to 600 pg/ml. C and D: Representative images of SDF-1 expression by IHC in lung (C) and
bone (D) (N = 6 mice), (i) Secondary antibody only; (ii) Balb/C with no tumor or AA (iii) SKG with no tumor; (iv) 4 T1 tumor bearing SKG mice
treated with control IgG antibody or (v) with anti-IL-17A antibody. Brown staining represents SDF-1 localization (Bone at 400X magnification and
Lung at 600X magnification). E and F: Levels of SDF-1 by ELISA in the lung (E) and bone (F) lysate of PyV MT mice with no AA and PyV MT + AA
with control or anti-IL-17A antibody treatment (*P < 0.05) (N = 3 mice).
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mice [6,8] and Figure 1A. The primary 4 T1 tumors are
also larger in the SKG mice [6,8].
Using these unique arthritic models of BC metastasis,

we previously established that neutralizing IL-17A can
significantly reduce both bone and lung metastasis [6,7]
and Figures 1 and 2. However, the underlying mechanism
of action of IL-17A remained unknown.
Data clearly demonstrate that treatment with the anti-IL-

17A antibody reduced the expression of SDF-1/CXCL12 in
the bones and lungs (Figure 4). SDF-1 plays a critical role
in the mobilization and recruitment of CXCR4+ BC cells
to the neo-angiogenic niches supporting tumor growth and
metastasis [32,33]. It is known that malignant primary BC
cells express high levels of chemokine receptor CXCR4.
When these cells pass through the organs that express large
amounts of the chemokine SDF-1/CXCL12, the cells leave
the circulation and enter the organs [11,34]. The CXCL12/
CXCR4 axis is known to be involved in several aspects of
tumor progression including angiogenesis, metastasis, and
survival [30]. Our data is the first to show that in arthritic
condition, blockade of IL-17A can disrupt this critical inter-
action of CXCR4 with SDF-1 by significantly reducing the
SDF-1 levels in the bones and lungs and thus inhibiting the
migration of the CXCR4+ BC cells towards the metastatic
niches. Furthermore, inhibition of migration of BC cells
was completely reversed by exogenously adding SDF-1
to the bone and lung lysate in an in vitro migration assay
(Figure 5C - F). This suggests that the SDF-1 expression is
critical for mobilizing the tumor cells to migrate.
It is also of interest that the downstream effect of IL-

17A neutralization was a reduction in IL-6 and M-CSF
Table 3 Densitometry analysis of the SDF-1 expression on
the lungs of the representative images from Figure 4 Ci-v

IntDen StdDev %Area

Secondary negative control 32.97** 30.27 0.3

Balb/C with no tumor 1001.25* 26.59 1.23

SKG with no tumor 1154.60* 25.53 1.98

SKG + BC + IgG 4249.27 21.13 25.49

SKG + BC + anti-IL-17A 1179.99* 24.97 4.49

(i) Secondary antibody only; (ii) Balb/C with no tumor and no AA; (iii) SKG with
no tumor; (iv) 4 T1 tumor bearing SKG mice treated with control IgG antibody
or with anti-IL-17A antibody (v) (*P < 0.05: Balb/C, SKG, SKG + BC + anti-IL-17A
against SKG + BC + IgG; **P < 0.01: Secondary antibody against all
other groups).
(Figure 3G - J). This was to be expected as IL-17 is known
to a) directly activate other immune cells to produce IL-6,
IL-8, and PGE2. [35] and b) indirectly activate the anti-
inflammatory Th2 type cytokines including IL-10 and IL-13
that are known to reduce levels of IL-6 and M-CSF [35].
M-CSF is a cytokine involved in the development and pro-
liferation of the monocyte/macrophage lineage cells and is
reported to participate in the induction of osteoclasts,
which is important in the destruction of bone and cartil-
age [36]. Thus, reduction of M-CSF with the anti-IL-17A
antibody treatment supports the hypothesis that bone
destruction due to arthritis creates a supportive milieu for
BC cells to metastasize. Indeed in our previous publi-
cations, we have shown that BC-associated metastasis
is significantly augmented in mice with arthritis and that
IL-17A, IL-6, COX-2, VEGF, MMP-9, IGF-II, M-CSF and
TNF-α are all major players [6,7]. These cytokines not
only play an imperative role in arthritis but also cancer
development and progression [37-48].
The emergence of IL-17A blockade as a future therapy

in AA is already reported and initial observations from
phase I trials show that signs and symptoms of AA are
significantly suppressed following treatment with anti-
IL-17A antibodies, without notable adverse effect [49].
Thus, we focused on IL-17A blockade and in understand-
ing the underlying mechanism by which IL-17A blockade
inhibits metastasis.
The experiments and the unique mouse models utilized

in this study implicate the importance of targeting IL-
17A for preventing metastasis associated with meta-
static BC. Whether IL-17A blockade directly or indirectly
(via reducing M-CSF and IL-6) regulates the SDF-1 levels
needs to be deciphered and will be the focus of our next
Table 4 Densitometry analysis of the SDF-1 expression on
the bones of the representative images from Figure 4 D i-v

IntDen StdDev %Area

Secondary negative control 1040.48* 24.75 0.69

Balb/C with no tumor 1105.238* 26.41 1.15

SKG with no tumor 1432.77* 22.72 1.29

SKG + BC + IgG 2124.35 26.42 10.25

SKG + BC + anti-IL-17A 1250.82* 22.09 2.72

(i) Secondary antibody only; (ii) Balb/C with no tumor and no AA; (iii) SKG with
no tumor; (iv) 4 T1 tumor bearing SKG mice treated with control IgG antibody
or with anti-IL-17A antibody (v). (*P < 0.05: all groups against SKG + BC + IgG).
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study. Nevertheless, data provides a rationale for de-
signing potential therapies that may utilize IL-17A
blockade in combination with conventional treatment
regimen for patients with metastatic BC that also present
with arthritis.
We recognize that other BC-bone metastasis models

that do not have any arthritis should be tested in the future.
However, to the best of our knowledge, there is currently
no immune competent spontaneous BC-bone metastasis
model available.
Conclusion
We conclude that in our model, neutralization of IL-17A
regulates SDF-1 expression in the metastatic niches either
directly or indirectly via reducing levels of IL-6 and M-CSF.

Additional files

Additional file 1: Figure S1. Kinetics of primary mammary gland tumor
growth in arthritic mice with BC ± treatment: A) SKG mice with 4 T1
tumors treated with anti-IL17A versus untreated or IgG control groups

http://www.biomedcentral.com/content/supplementary/1471-2407-14-225-S1.pdf
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(*P < 0.05; **P < 0.01, ***P < 0.001); B) PyV MT mice with AA and treated
with anti-IL17A versus untreated or IgG control groups.

Additional file 2: Table S1. Level of SDF-1 in bone and lung lysate of
non-tumor bearing normal and arthritic mice treated with anti-IL-17A
antibody.

Additional file 3: Figure S2. The entire western blot image of CXCR4
expression in tumors from Figure 5A and B. The appropriate size for
CXCR4 is 43 KD shown in Figure 5. A) 4 T1 tumor bearing SKG mice treated
with control IgG or anti-IL-17A antibody (N = 3 tumors); B) PyV MT-arthritic
mice treated with control IgG or anti-IL-17A antibody (N = 3 tumors).
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