2 research outputs found

    Exploring the Low-ZZ Shore of the Island of Inversion at N=19N = 19

    Get PDF
    The technique of invariant mass spectroscopy has been used to measure, for the first time, the ground state energy of neutron-unbound 28F,^{28}\textrm{F}, determined to be a resonance in the 27F+n^{27}\textrm{F} + n continuum at 22‾0(5‾0)2\underline{2}0 (\underline{5}0) keV. States in 28F^{28}\textrm{F} were populated by the reactions of a 62 MeV/u 29Ne^{29}\textrm{Ne} beam impinging on a 288 mg/cm2\textrm{mg/cm}^2 beryllium target. The measured 28F^{28}\textrm{F} ground state energy is in good agreement with USDA/USDB shell model predictions, indicating that pfpf shell intruder configurations play only a small role in the ground state structure of 28F^{28}\textrm{F} and establishing a low-ZZ boundary of the island of inversion for N=19 isotones.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Unbound excited states of the N=16 closed shell nucleus O-24

    No full text
    Two low-lying neutron-unbound excited states of O-24, populated by proton-knockout reactions on F-26, have been measured using the MoNA and LISA arrays in combination with the Sweeper Magnet at the Coupled Cyclotron Facility at the NSCL using invariant mass spectroscopy. The current measurement confirms the separate identity of two states with decay energies 0.51(5) MeV and 1.20(7) MeV, and provides support for theoretical model calculations, which predict a 2(+) first excited state and a 1(+) higher-energy state. The measured excitation energies for these states, 4.70(15) MeV for the 2(+) level and 5.39(16) MeV for the 1(+) level, are consistent with previous lower-resolution measurements, and are compared with five recent model predictions
    corecore