8 research outputs found

    Web-based climate information resources for malaria control in Africa

    Get PDF
    Malaria remains a major public health threat to more than 600 million Africans and its control is recognized as critical to achieving the Millennium Development Goals. The greatest burden of malaria in Africa occurs in the endemic regions where the disease pathogen is continuously present in the community. These regions are characterized by an environment that is conducive to interactions between the Anopheles mosquito, malaria parasites and human hosts, as well as housing of generally poor quality, which offers little protection from mosquito-human contact. Epidemic malaria tends to occur along the geographical margins of endemic regions, when the equilibrium between the human, parasite and mosquito vector populations is occasionally disturbed and a sharp but temporary increase in disease incidence results. When malaria control measures are inadequate, as is the case in much of sub-Saharan Africa, the disease distribution is closely linked with seasonal patterns of the climate and local environment. In the absence of good epidemiological data on malaria distribution in Africa, climate information has long been used to develop malaria risk maps that illustrate the boundaries of 'climatic suitability for endemic transmission.' The best known of these are produced by the Pan-African-based MARA Collaboration. This paper describes the development of additional malaria suitability maps which have been produced in an online, interactive format to enable temporal information (i.e., seasonality of climate conditions) to be queried and displayed along with spatial information. These maps and the seasonal information that they contain should be useful to the malaria control and health service communities for their planning and operational activities

    Use of Remote Sensing for Monitoring Climate Variability for Integrated Early Warning Systems: Applications for Human Diseases and Desert Locust Management

    Get PDF
    A number of the major human infectious diseases (like malaria and dengue) and Desert Locusts that still plague the developing world are sensitive to inter-seasonal and inter-decadal changes in environment and climate. Monitoring variations in environmental conditions such as rainfall and vegetation helps decision-makers at Ministries of Agriculture and Ministries of Health to assess the risk levels of Desert Locust outbreaks or malaria epidemics. The International research institute for climate and society (IRI) has developed products based on remotely sensed data to monitor those changes and provide the information directly to the decision-makers. This paper presents recent developments which use remote sensing to monitor climate variability, environmental conditions and their impacts on the dynamics of infectious diseases (malaria) and Desert Locust outbreaks

    A steep decline of malaria morbidity and mortality trends in Eritrea between 2000 and 2004: the effect of combination of control methods

    Get PDF
    BACKGROUND: Malaria is a huge public health problem in Africa that is responsible for more than one million deaths annually. In line with the Roll Back Malaria initiative and the Abuja Declaration, Eritrea and other African countries have intensified their fight against malaria. This study examines the impact of Eritrea's Roll Back Malaria Programme: 2000–2004 and the effects and possible interactions between the public health interventions in use. METHODS: This study employed cross-sectional survey to collect data from households, community and health facilities on coverage and usage of Insecticide-Treated Nets (ITNs), Indoor Residual Spraying (IRS), larvicidal activities and malaria case management. Comparative data was obtained from a similar survey carried out in 2001. Data from the Health Management Information System (HMIS) and reports of the annual assessments by the National Malaria Control Programme was used to assess impact. Time series model (ARIMA) was used to assess association. RESULTS: In the period 2000–2004, approximately 874,000 ITNs were distributed and 13,109 health workers and community health agents were trained on malaria case management. In 2004, approximately 81% households owned at least one net, of which 73% were ITNs and 58.6% of children 0–5 years slept under a net. The proportion of malaria cases managed by community health agents rose from 50% in 1999 to 78% in 2004. IRS coverage increased with the combined amount of DDT and Malathion used rising from 6,444 kg, in 2000 to 43,491 kg, in 2004, increasing the population protected from 117,017 to 259,420. Drug resistance necessitated regimen change to chloroquine plus sulfadoxine-pyrimethamine. During the period, there was a steep decline in malaria morbidity and case fatality by 84% and 40% respectively. Malaria morbidity was strongly correlated to the numbers of ITNs distributed (β = -0.125, p < 0.005) and the amount (kg) of DDT and Malathion used for IRS (β = -2.352, p < 0.05). The correlation between malaria case fatality and ITNs, IRS, population protected and annual rainfall was not statistically significant. CONCLUSION: Eritrea has within 5 years attained key Roll Back Malaria targets. ITNs and IRS contributed most to reducing malaria morbidity

    Drought related disasters: A global assessment

    No full text

    Using climate information for improved health in Africa: relevance, constraints and opportunities

    Get PDF
    Abstract. Good health status is one of the primary aspirations of human social development and, as a consequence, health indicators are key components of the human development indices by which we measure progress toward sustainable development. Certain diseases and ill health are associated with particular environmental and climate conditions. The timeframe of the Millennium Development Goals (MDGs) demands that the risks to health associated with current climate variability are more fully understood and acted upon to improve the focus of resources in climate sensitive disease control, especially in sub-Saharan Africa, where good epidemiological surveillance data are lacking. In the absence of high-quality epidemiological data on malaria distribution in Africa, climate information has long been used to develop malaria risk maps illustrating the climatic suitability boundaries for endemic transmission. However, experience to date has shown that it is difficult in terms of availability, timing and cost to obtain meteorological observations from national meteorological services in Africa. National health services generally find the costs of purchasing these data prohibitive given their competing demands for resources across the spectrum of health service requirements. Some national health services have tried to overcome this access problem by using proxies derived from satellites, which tend to be available freely, in &apos;near-real-time &apos; and therefore offer much promise for monitoring applications. This paper discusses the issues related to climate and health, reviews the current use of climate information for malaria endemic and epidemic surveillance, and presents examples of operational use of climate information for malaria control in Africa based on Geographical Information Systems and Remote Sensing

    Use of remote sensing for monitoring climate variability for integrated early warning systems: applications for human diseases and desert locust management

    Get PDF
    Abstract — A number of the major human infectious diseases (like malaria and dengue) and Desert Locusts that still plague the developing world are sensitive to inter-seasonal and inter-decadal changes in environment and climate. Monitoring variations in environmental conditions such as rainfall and vegetation helps decision-makers at Ministries of Agriculture and Ministries of Health to assess the risk levels of Desert Locust outbreaks or malaria epidemics. The International Research Institute for Climate and Society (IRI) has developed products based on remotely sensed data to monitor those changes and provide the information directly to the decision-makers. This paper presents recent developments which use remote sensing to monitor climate variability, environmental conditions and their impacts on the dynamics of infectious diseases (malaria) and Desert Locust outbreaks
    corecore