4,349 research outputs found
Thermo-magnetic history effects in the vortex state of YNi_2B_2C superconductor
The nature of five-quadrant magnetic isotherms for is different from that for
in a single crystal of YNi2B2C, pointing towards an anisotropic behaviour of
the flux line lattice (FLL). For, a well defined peak effect (PE) and second
magnetization peak (SMP) can be observed and the loop is open prior to the PE.
However, for, the loop is closed and one can observe only the PE. We have
investigated the history dependence of magnetization hysteresis data for by
recording minor hysteresis loops. The observed history dependence in across
different anomalous regions are rationalized on the basis of
su-perheating/supercooling of the vortex matter across the first-order-like
phase transition and possible additional effects due to annealing of the
disordered vortex bundles to the underlying equilibrium state.Comment: 4 pages, 4 figure
Energy and Efficiency of Adiabatic Quantum Search Algorithms
We present the results of a detailed analysis of a general, unstructured
adiabatic quantum search of a data base of items. In particular we examine
the effects on the computation time of adding energy to the system. We find
that by increasing the lowest eigenvalue of the time dependent Hamiltonian {\it
temporarily} to a maximum of , it is possible to do the
calculation in constant time. This leads us to derive the general theorem which
provides the adiabatic analogue of the bound of conventional quantum
searches. The result suggests that the action associated with the oracle term
in the time dependent Hamiltonian is a direct measure of the resources required
by the adiabatic quantum search.Comment: 6 pages, Revtex, 1 figure. Theorem modified, references and comments
added, sections introduced, typos corrected. Version to appear in J. Phys.
Extending scientific computing system with structural quantum programming capabilities
We present a basic high-level structures used for developing quantum
programming languages. The presented structures are commonly used in many
existing quantum programming languages and we use quantum pseudo-code based on
QCL quantum programming language to describe them. We also present the
implementation of introduced structures in GNU Octave language for scientific
computing. Procedures used in the implementation are available as a package
quantum-octave, providing a library of functions, which facilitates the
simulation of quantum computing. This package allows also to incorporate
high-level programming concepts into the simulation in GNU Octave and Matlab.
As such it connects features unique for high-level quantum programming
languages, with the full palette of efficient computational routines commonly
available in modern scientific computing systems. To present the major features
of the described package we provide the implementation of selected quantum
algorithms. We also show how quantum errors can be taken into account during
the simulation of quantum algorithms using quantum-octave package. This is
possible thanks to the ability to operate on density matrices
Comparison of Gravitational Wave Detector Network Sky Localization Approximations
Gravitational waves emitted during compact binary coalescences are a
promising source for gravitational-wave detector networks. The accuracy with
which the location of the source on the sky can be inferred from gravitational
wave data is a limiting factor for several potential scientific goals of
gravitational-wave astronomy, including multi-messenger observations. Various
methods have been used to estimate the ability of a proposed network to
localize sources. Here we compare two techniques for predicting the uncertainty
of sky localization -- timing triangulation and the Fisher information matrix
approximations -- with Bayesian inference on the full, coherent data set. We
find that timing triangulation alone tends to over-estimate the uncertainty in
sky localization by a median factor of for a set of signals from
non-spinning compact object binaries ranging up to a total mass of , and the over-estimation increases with the mass of the system. We
find that average predictions can be brought to better agreement by the
inclusion of phase consistency information in timing-triangulation techniques.
However, even after corrections, these techniques can yield significantly
different results to the full analysis on specific mock signals. Thus, while
the approximate techniques may be useful in providing rapid, large scale
estimates of network localization capability, the fully coherent Bayesian
analysis gives more robust results for individual signals, particularly in the
presence of detector noise.Comment: 11 pages, 7 Figure
Schemes for Parallel Quantum Computation Without Local Control of Qubits
Typical quantum computing schemes require transformations (gates) to be
targeted at specific elements (qubits). In many physical systems, direct
targeting is difficult to achieve; an alternative is to encode local gates into
globally applied transformations. Here we demonstrate the minimum physical
requirements for such an approach: a one-dimensional array composed of two
alternating 'types' of two-state system. Each system need be sensitive only to
the net state of its nearest neighbors, i.e. the number in state 1 minus the
number in state 2. Additionally, we show that all such arrays can perform quite
general parallel operations. A broad range of physical systems and interactions
are suitable: we highlight two potential implementations.Comment: 12 pages + 3 figures. Several small corrections mad
Nested quantum search and NP-complete problems
A quantum algorithm is known that solves an unstructured search problem in a
number of iterations of order , where is the dimension of the
search space, whereas any classical algorithm necessarily scales as . It
is shown here that an improved quantum search algorithm can be devised that
exploits the structure of a tree search problem by nesting this standard search
algorithm. The number of iterations required to find the solution of an average
instance of a constraint satisfaction problem scales as , with
a constant depending on the nesting depth and the problem
considered. When applying a single nesting level to a problem with constraints
of size 2 such as the graph coloring problem, this constant is
estimated to be around 0.62 for average instances of maximum difficulty. This
corresponds to a square-root speedup over a classical nested search algorithm,
of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure
Parameter Estimation with Mixed-State Quantum Computation
We present a quantum algorithm to estimate parameters at the quantum
metrology limit using deterministic quantum computation with one bit. When the
interactions occurring in a quantum system are described by a Hamiltonian , we estimate by zooming in on previous estimations and by
implementing an adaptive Bayesian procedure. The final result of the algorithm
is an updated estimation of whose variance has been decreased in
proportion to the time of evolution under H. For the problem of estimating
several parameters, we implement dynamical-decoupling techniques and use the
results of single parameter estimation. The cases of discrete-time evolution
and reference-frame alignment are also discussed within the adaptive approach.Comment: 12 pages. Improved introduction and technical details moved to
Appendi
Implementation of quantum search algorithm using classical Fourier optics
We report on an experiment on Grover's quantum search algorithm showing that
{\em classical waves} can search a -item database as efficiently as quantum
mechanics can. The transverse beam profile of a short laser pulse is processed
iteratively as the pulse bounces back and forth between two mirrors. We
directly observe the sought item being found in iterations, in
the form of a growing intensity peak on this profile. Although the lack of
quantum entanglement limits the {\em size} of our database, our results show
that entanglement is neither necessary for the algorithm itself, nor for its
efficiency.Comment: 4 pages, 3 figures; minor revisions plus extra referenc
Pressure-Induced Superconductivity in Sc to 74 GPa
Using a diamond anvil cell with nearly hydrostatic helium pressure medium we
have significantly extended the superconducting phase diagram Tc(P) of Sc, the
lightest of all transition metals. We find that superconductivity is induced in
Sc under pressure, Tc increasing monotonically to 8.2 K at 74.2 GPa. The Tc(P)
dependences of the trivalent d-electron metals Sc, Y, La, and Lu are compared
and discussed within a simple s-d charge transfer framework.Comment: to be published in Phys. Rev. B (Brief Reports
Quantum Search with Two-atom Collisions in Cavity QED
We propose a scheme to implement two-qubit Grover's quantum search algorithm
using Cavity Quantum Electrodynamics. Circular Rydberg atoms are used as
quantum bits (qubits). They interact with the electromagnetic field of a
non-resonant cavity . The quantum gate dynamics is provided by a
cavity-assisted collision, robust against decoherence processes. We present the
detailed procedure and analyze the experimental feasibility.Comment: 4 pages, 2 figure
- …