3,943 research outputs found

    Optimization of Partial Search

    Full text link
    Quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster, this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is measured by number of queries to the oracle. The author suggests new version of Grover-Radhakrishnan algorithm which uses minimal number of queries to the oracle. The algorithm can run on the same hardware which is used for the usual Grover algorithm.Comment: 5 page

    Implementation of quantum search algorithm using classical Fourier optics

    Get PDF
    We report on an experiment on Grover's quantum search algorithm showing that {\em classical waves} can search a NN-item database as efficiently as quantum mechanics can. The transverse beam profile of a short laser pulse is processed iteratively as the pulse bounces back and forth between two mirrors. We directly observe the sought item being found in N\sim\sqrt{N} iterations, in the form of a growing intensity peak on this profile. Although the lack of quantum entanglement limits the {\em size} of our database, our results show that entanglement is neither necessary for the algorithm itself, nor for its efficiency.Comment: 4 pages, 3 figures; minor revisions plus extra referenc

    Quantum Algorithm for the Collision Problem

    Get PDF
    In this note, we give a quantum algorithm that finds collisions in arbitrary r-to-one functions after only O((N/r)^(1/3)) expected evaluations of the function. Assuming the function is given by a black box, this is more efficient than the best possible classical algorithm, even allowing probabilism. We also give a similar algorithm for finding claws in pairs of functions. Furthermore, we exhibit a space-time tradeoff for our technique. Our approach uses Grover's quantum searching algorithm in a novel way.Comment: 8 pages, LaTeX2

    Grover's Quantum Search Algorithm and Diophantine Approximation

    Full text link
    In a fundamental paper [Phys. Rev. Lett. 78, 325 (1997)] Grover showed how a quantum computer can find a single marked object in a database of size N by using only O(N^{1/2}) queries of the oracle that identifies the object. His result was generalized to the case of finding one object in a subset of marked elements. We consider the following computational problem: A subset of marked elements is given whose number of elements is either M or K, M<K, our task is to determine which is the case. We show how to solve this problem with a high probability of success using only iterations of Grover's basic step (and no other algorithm). Let m be the required number of iterations; we prove that under certain restrictions on the sizes of M and K the estimation m < (2N^{1/2})/(K^{1/2}-M^{1/2}) obtains. This bound sharpens previous results and is known to be optimal up to a constant factor. Our method involves simultaneous Diophantine approximations, so that Grover's algorithm is conceptualized as an orbit of an ergodic automorphism of the torus. We comment on situations where the algorithm may be slow, and note the similarity between these cases and the problem of small divisors in classical mechanics.Comment: 8 pages, revtex, Title change

    Description and Operation of the A3 Subscale Facility

    Get PDF
    The purpose of this paper is to give an overview of the general design and operation of the A3 Subscale test facility. The goal is to provide the reader with a general understanding of what the major facility systems are, where they are located, and how they are used to meet the objectives supporting the design of the A3 altitude rocket test facility. This paper also provides the reader with the background information prior to reading the subsequent papers detailing the design and test results of the various systems described herein

    Indications of superconductivity in doped highly oriented pyrolytic graphite

    Full text link
    We have observed possible superconductivity using standard resistance vs. temperature techniques in phosphorous ion implanted Highly Oriented Pyrolytic Graphite. The onset appears to be above 100 K and quenching by an applied magnetic field has been observed. The four initial boron implanted samples showed no signs of becoming superconductive whereas all four initial and eight subsequent samples that were implanted with phosphorous showed at least some sign of the existence of small amounts of the possibly superconducting phases. The observed onset temperature is dependent on both the number of electron donors present and the amount of damage done to the graphene sub-layers in the Highly Oriented Pyrolytic Graphite samples. As a result the data appears to suggest that the potential for far higher onset temperatures in un-damaged doped graphite exists.Comment: 7 pages, 1 table, 5 figures, 11 references, Acknowledgments section was correcte

    Single-Step Quantum Search Using Problem Structure

    Get PDF
    The structure of satisfiability problems is used to improve search algorithms for quantum computers and reduce their required coherence times by using only a single coherent evaluation of problem properties. The structure of random k-SAT allows determining the asymptotic average behavior of these algorithms, showing they improve on quantum algorithms, such as amplitude amplification, that ignore detailed problem structure but remain exponential for hard problem instances. Compared to good classical methods, the algorithm performs better, on average, for weakly and highly constrained problems but worse for hard cases. The analytic techniques introduced here also apply to other quantum algorithms, supplementing the limited evaluation possible with classical simulations and showing how quantum computing can use ensemble properties of NP search problems.Comment: 39 pages, 12 figures. Revision describes further improvement with multiple steps (section 7). See also http://www.parc.xerox.com/dynamics/www/quantum.htm

    Approximate quantum counting on an NMR ensemble quantum computer

    Full text link
    We demonstrate the implementation of a quantum algorithm for estimating the number of matching items in a search operation using a two qubit nuclear magnetic resonance (NMR) quantum computer.Comment: 4 pages LaTeX/RevTex including 4 figures (3 LaTeX, 1 PostScript). Submitted to Physical Review Letter
    corecore