4,306 research outputs found
Amorphization of Vortex Matter and Reentrant Peak Effect in YBaCuO
The peak effect (PE) has been observed in a twinned crystal of
YBaCuO for Hc in the low field range, close to
the zero field superconducting transition temperature (T(0)) . A sharp
depinning transition succeeds the peak temperature T of the PE. The PE
phenomenon broadens and its internal structure smoothens out as the field is
increased or decreased beyond the interval between 250 Oe and 1000 Oe.
Moreover, the PE could not be observed above 10 kOe and below 20 Oe. The locus
of the T(H) values shows a reentrant characteristic with a nose like
feature located at T(H)/T(0)0.99 and H100 Oe (where
the FLL constant apenetration depth ). The upper part of
the PE curve (0.5 kOeH10 kOe) can be fitted to a melting scenario with
the Lindemann number c0.25. The vortex phase diagram near T(0)
determined from the characteristic features of the PE in
YBaCuO(Hc) bears close resemblance to that in
the 2H-NbSe system, in which a reentrant PE had been observed earlier.Comment: 15 pages and 7 figure
Vortex Phase Diagram of weakly pinned YBaCuO for H c
Vortex phase diagram in a weakly pinned crystal of YBCO for H c
is reviewed in the light of a recent elucidation of the process of `inverse
melting' in a Bismuth cuprate system and the imaging of an interface between
the ordered and the disordered regions across the peak effect in 2H-NbSe.
In the given YBCO crystal, a clear distinction can be made between the second
magnetization peak (SMP) and the peak effect (PE) between 65 K and 75 K. The
field region between the peak fields of the SMP (H) and the onset
fields of the PE (H)is not only continuously connected to the Bragg
glass phase at lower fields but it is also sandwiched between the higher
temperature vortex liquid phase and the lower temperature vortex glass phase.
Thus, an ordered vortex state between H and H can get
transformed to the (disordered) vortex liquid state on heating as well as to
the (disordered) vortex glass state on cooling, a situation analogous to the
thermal melting and the inverse melting phenomenon seen in a Bismuth cuprate.Comment: Presented in IWCC-200
Recommended from our members
Situating multimodal learning analytics
The digital age has introduced a host of new challenges and opportunities for the learning sciences community. These challenges and opportunities are particularly abundant in multimodal learning analytics (MMLA), a research methodology that aims to extend work from Educational Data Mining (EDM) and Learning Analytics (LA) to multimodal learning environments by treating multimodal data. Recognizing the short-term opportunities and longterm challenges will help develop proof cases and identify grand challenges that will help propel the field forward. To support the field's growth, we use this paper to describe several ways that MMLA can potentially advance learning sciences research and touch upon key challenges that researchers who utilize MMLA have encountered over the past few years
Quantum Algorithm for the Collision Problem
In this note, we give a quantum algorithm that finds collisions in arbitrary
r-to-one functions after only O((N/r)^(1/3)) expected evaluations of the
function. Assuming the function is given by a black box, this is more efficient
than the best possible classical algorithm, even allowing probabilism. We also
give a similar algorithm for finding claws in pairs of functions. Furthermore,
we exhibit a space-time tradeoff for our technique. Our approach uses Grover's
quantum searching algorithm in a novel way.Comment: 8 pages, LaTeX2
High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4
We studied the effects of high-pressure on the crystalline structure of bulk
and nanocrystalline scheelite-type PbMoO4. We found that in both cases the
compressibility of the materials is highly non-isotropic, being the c-axis the
most compressible one. We also observed that the volume compressibility of
nanocrystals becomes higher that the bulk one at 5 GPa. In addition, at 10.7(8)
GPa we observed the onset of an structural phase transition in bulk PbMoO4. The
high-pressure phase has a monoclinic structure similar to M-fergusonite. The
transition is reversible and not volume change is detected between the low- and
high-pressure phases. No additional structural changes or evidence of
decomposition are found up to 21.1 GPa. In contrast nanocrystalline PbMoO4
remains in the scheelite structure at least up to 16.1 GPa. Finally, the
equation of state for bulk and nanocrystalline PbMoO4 are also determined.Comment: 18 pages, 4 figure
Energy and Efficiency of Adiabatic Quantum Search Algorithms
We present the results of a detailed analysis of a general, unstructured
adiabatic quantum search of a data base of items. In particular we examine
the effects on the computation time of adding energy to the system. We find
that by increasing the lowest eigenvalue of the time dependent Hamiltonian {\it
temporarily} to a maximum of , it is possible to do the
calculation in constant time. This leads us to derive the general theorem which
provides the adiabatic analogue of the bound of conventional quantum
searches. The result suggests that the action associated with the oracle term
in the time dependent Hamiltonian is a direct measure of the resources required
by the adiabatic quantum search.Comment: 6 pages, Revtex, 1 figure. Theorem modified, references and comments
added, sections introduced, typos corrected. Version to appear in J. Phys.
Extending scientific computing system with structural quantum programming capabilities
We present a basic high-level structures used for developing quantum
programming languages. The presented structures are commonly used in many
existing quantum programming languages and we use quantum pseudo-code based on
QCL quantum programming language to describe them. We also present the
implementation of introduced structures in GNU Octave language for scientific
computing. Procedures used in the implementation are available as a package
quantum-octave, providing a library of functions, which facilitates the
simulation of quantum computing. This package allows also to incorporate
high-level programming concepts into the simulation in GNU Octave and Matlab.
As such it connects features unique for high-level quantum programming
languages, with the full palette of efficient computational routines commonly
available in modern scientific computing systems. To present the major features
of the described package we provide the implementation of selected quantum
algorithms. We also show how quantum errors can be taken into account during
the simulation of quantum algorithms using quantum-octave package. This is
possible thanks to the ability to operate on density matrices
- …