6,911 research outputs found

    Quantum Disentangled Liquids

    Get PDF
    We propose and explore a new finite temperature phase of translationally invariant multi-component liquids which we call a "Quantum Disentangled Liquid" (QDL) phase. We contemplate the possibility that in fluids consisting of two (or more) species of indistinguishable quantum particles with a large mass ratio, the light particles might "localize" on the heavy particles. We give a precise, formal definition of this Quantum Disentangled Liquid phase in terms of the finite energy density many-particle wavefunctions. While the heavy particles are fully thermalized, for a typical fixed configuration of the heavy particles, the entanglement entropy of the light particles satisfies an area law; this implies that the light particles have not thermalized. Thus, in a QDL phase, thermal equilibration is incomplete, and the canonical assumptions of statistical mechanics are not fully operative. We explore the possibility of QDL in water, with the light proton degrees of freedom becoming "localized" on the oxygen ions. We do not presently know whether a local, generic Hamiltonian can have eigenstates of the QDL form, and if it can not, then the non-thermal behavior discussed here will exist as an interesting crossover phenomena at time scales that diverge as the ratio of the mass of the heavy to the light species also diverges.Comment: 14 page

    Quantum Mechanics helps in searching for a needle in a haystack

    Get PDF
    Quantum mechanics can speed up a range of search applications over unsorted data. For example imagine a phone directory containing N names arranged in completely random order. To find someone's phone number with a probability of 50%, any classical algorithm (whether deterministic or probabilistic) will need to access the database a minimum of O(N) times. Quantum mechanical systems can be in a superposition of states and simultaneously examine multiple names. By properly adjusting the phases of various operations, successful computations reinforce each other while others interfere randomly. As a result, the desired phone number can be obtained in only O(sqrt(N)) accesses to the database.Comment: Postscript, 4 pages. This is a modified version of the STOC paper (quant-ph/9605043) and is modified to make it more comprehensible to physicists. It appeared in Phys. Rev. Letters on July 14, 1997. (This paper was originally put out on quant-ph on June 13, 1997, the present version has some minor typographical changes

    Circular 99

    Get PDF
    We initiated this study to develop a single small scale boiling tank and test a drying technique on samples of velvet antler

    Observation of tunable exchange bias in Sr2_2YbRuO6_6

    Full text link
    The double perovskite compound, Sr2_{2}YbRuO6_{6}, displays reversal in the orientation of magnetic moments along with negative magnetization due to an underlying magnetic compensation phenomenon. The exchange bias (EB) field below the compensation temperature could be the usual negative or the positive depending on the initial cooling field. This EB attribute has the potential of getting tuned in a preselected manner, as the positive EB field is seen to crossover from positive to negative value above TcompT_{\mathrm{comp}}.Comment: 4 Pages, 4 Figure

    Noise in Grover's Quantum Search Algorithm

    Full text link
    Grover's quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grover's algorithm. We study the algorithm's intrinsic robustness when no quantum correction codes are used, and evaluate how much noise the algorithm can bear with, in terms of the size of the phone book and a desired probability of finding the correct result. The algorithm loses efficiency when noise is added, but does not slow down. We also study the maximal noise under which the iterated quantum algorithm is just as slow as the classical algorithm. In all cases, the width of the allowed noise scales with the size of the phone book as N^-2/3.Comment: 17 pages, 2 eps figures. Revised version. To be published in PRA, December 199
    corecore