4,663 research outputs found
Topological spin Hall states, charged skyrmions, and superconductivity in two dimensions
We study the properties of two dimensional topological spin hall insulators
which arise through spontaneous breakdown of spin symmetry in systems that are
spin rotation invariant. Such a phase breaks spin rotation but not time
reversal symmetry and has a vector order parameter. Skyrmion configurations in
this vector order parameter are shown to have electric charge that is twice the
electron charge. When the spin Hall order is destroyed by condensation of
skyrmions superconductivity results. This may happen either through doping or
at fixed filling by tuning interactions to close the skyrmion gap. In the
latter case the superconductor- spin Hall insulator quantum phase transition
can be second order even though the two phases break distinct symmetries.Comment: 4 pages, typos corrected, added a footnot
Quantum computers can search rapidly by using almost any transformation
A quantum computer has a clear advantage over a classical computer for
exhaustive search. The quantum mechanical algorithm for exhaustive search was
originally derived by using subtle properties of a particular quantum
mechanical operation called the Walsh-Hadamard (W-H) transform. This paper
shows that this algorithm can be implemented by replacing the W-H transform by
almost any quantum mechanical operation. This leads to several new applications
where it improves the number of steps by a square-root. It also broadens the
scope for implementation since it demonstrates quantum mechanical algorithms
that can readily adapt to available technology.Comment: This paper is an adapted version of quant-ph/9711043. It has been
modified to make it more readable for physicists. 9 pages, postscrip
Weak Mott insulators on the triangular lattice: possibility of a gapless nematic quantum spin liquid
We study the energetics of Gutzwiller projected BCS states of various
symmetries for the triangular lattice antiferromagnet with a four particle ring
exchange using variational Monte Carlo methods. In a range of parameters the
energetically favored state is found to be a projected paired
state which breaks lattice rotational symmetry. We show that the properties of
this nematic or orientationally ordered paired spin liquid state as a function
of temperature and pressure can account for many of the experiments on organic
materials. We also study the ring-exchange model with ferromagnetic Heisenberg
exchange and find that amongst the studied ans\"atze, a projected wave
state is the most favorable.Comment: Longer version, 7+ pages, 5 figure
Scattering quantum random-walk search with errors
We analyze the realization of a quantum-walk search algorithm in a passive,
linear optical network. The specific model enables us to consider the effect of
realistic sources of noise and losses on the search efficiency. Photon loss
uniform in all directions is shown to lead to the rescaling of search time.
Deviation from directional uniformity leads to the enhancement of the search
efficiency compared to uniform loss with the same average. In certain cases
even increasing loss in some of the directions can improve search efficiency.
We show that while we approach the classical limit of the general search
algorithm by introducing random phase fluctuations, its utility for searching
is lost. Using numerical methods, we found that for static phase errors the
averaged search efficiency displays a damped oscillatory behaviour that
asymptotically tends to a non-zero value.Comment: 10 pages, 10 figures. Two figures added for clarity, also made
improvements to the tex
Nested quantum search and NP-complete problems
A quantum algorithm is known that solves an unstructured search problem in a
number of iterations of order , where is the dimension of the
search space, whereas any classical algorithm necessarily scales as . It
is shown here that an improved quantum search algorithm can be devised that
exploits the structure of a tree search problem by nesting this standard search
algorithm. The number of iterations required to find the solution of an average
instance of a constraint satisfaction problem scales as , with
a constant depending on the nesting depth and the problem
considered. When applying a single nesting level to a problem with constraints
of size 2 such as the graph coloring problem, this constant is
estimated to be around 0.62 for average instances of maximum difficulty. This
corresponds to a square-root speedup over a classical nested search algorithm,
of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure
A Study to Determine the In-service Needs of Vocational Education Teachers in the City of Chesapeake
The questions presented here will give specific meaning and direction to the problem under study. The data collected in this study will provide answers to these research questions: 1. What is meant by in-service education? 2. Are supervisors aware of teacher in-service needs? 3. Who should arrange in-service education sessions for vocational teachers? 4. What are the characteristics of an effective in-service program
Vortex Phase Diagram of weakly pinned YBaCuO for H c
Vortex phase diagram in a weakly pinned crystal of YBCO for H c
is reviewed in the light of a recent elucidation of the process of `inverse
melting' in a Bismuth cuprate system and the imaging of an interface between
the ordered and the disordered regions across the peak effect in 2H-NbSe.
In the given YBCO crystal, a clear distinction can be made between the second
magnetization peak (SMP) and the peak effect (PE) between 65 K and 75 K. The
field region between the peak fields of the SMP (H) and the onset
fields of the PE (H)is not only continuously connected to the Bragg
glass phase at lower fields but it is also sandwiched between the higher
temperature vortex liquid phase and the lower temperature vortex glass phase.
Thus, an ordered vortex state between H and H can get
transformed to the (disordered) vortex liquid state on heating as well as to
the (disordered) vortex glass state on cooling, a situation analogous to the
thermal melting and the inverse melting phenomenon seen in a Bismuth cuprate.Comment: Presented in IWCC-200
Comparison of Gravitational Wave Detector Network Sky Localization Approximations
Gravitational waves emitted during compact binary coalescences are a
promising source for gravitational-wave detector networks. The accuracy with
which the location of the source on the sky can be inferred from gravitational
wave data is a limiting factor for several potential scientific goals of
gravitational-wave astronomy, including multi-messenger observations. Various
methods have been used to estimate the ability of a proposed network to
localize sources. Here we compare two techniques for predicting the uncertainty
of sky localization -- timing triangulation and the Fisher information matrix
approximations -- with Bayesian inference on the full, coherent data set. We
find that timing triangulation alone tends to over-estimate the uncertainty in
sky localization by a median factor of for a set of signals from
non-spinning compact object binaries ranging up to a total mass of , and the over-estimation increases with the mass of the system. We
find that average predictions can be brought to better agreement by the
inclusion of phase consistency information in timing-triangulation techniques.
However, even after corrections, these techniques can yield significantly
different results to the full analysis on specific mock signals. Thus, while
the approximate techniques may be useful in providing rapid, large scale
estimates of network localization capability, the fully coherent Bayesian
analysis gives more robust results for individual signals, particularly in the
presence of detector noise.Comment: 11 pages, 7 Figure
Single-Step Quantum Search Using Problem Structure
The structure of satisfiability problems is used to improve search algorithms
for quantum computers and reduce their required coherence times by using only a
single coherent evaluation of problem properties. The structure of random k-SAT
allows determining the asymptotic average behavior of these algorithms, showing
they improve on quantum algorithms, such as amplitude amplification, that
ignore detailed problem structure but remain exponential for hard problem
instances. Compared to good classical methods, the algorithm performs better,
on average, for weakly and highly constrained problems but worse for hard
cases. The analytic techniques introduced here also apply to other quantum
algorithms, supplementing the limited evaluation possible with classical
simulations and showing how quantum computing can use ensemble properties of NP
search problems.Comment: 39 pages, 12 figures. Revision describes further improvement with
multiple steps (section 7). See also
http://www.parc.xerox.com/dynamics/www/quantum.htm
- …