26 research outputs found

    Sorghum Tolerance of Phloem-Feeding Aphids

    Get PDF
    Aphids are phloem sap-feeding insects that negatively affects plant productivity. With short generation times, new aphid biotypes may arise either in response to pesticide use or through other factors. Additional biotypes can cause serious damage to plants compared to others. Whereas others can become highly resistant to methods of pest control. One possible solution to this problem is to focus on the plant itself, or host plant resistance. Plant tolerance is one of the plant resistance categories in which the plant is capable of functioning normally and remain relatively unharmed and stable in response to insect herbivory without harming the insect. In this study, we utilized the natural variation in a panel of sorghum inbred lines to elucidate novel sources of sorghum tolerance to sugar cane aphid (SCA), Melanaphis sacchari Zehntner. From the aphid bioassay and plant growth parameters data, we found SC35 the most tolerant line to SCA among the NAM founder lines. SC35 showed maximum number of aphids after 14 days of SCA infestation and significantly lower rate the reduction in height loss, plant biomass, and chlorophyll index. Further studies are needed to explore the genetic and biochemical mechanisms in sorghum that provide tolerance to aphid infestation. This information obtained from this study could be used to breed new lines of sorghum, which can tolerate aphid populations and in turn can assist in increasing sorghum yields

    Temporal transcriptomic profiling elucidates sorghum defense mechanisms against sugarcane aphids

    Get PDF
    Background The sugarcane aphid (SCA; Melanaphis sacchari) has emerged as a key pest on sorghum in the United States that feeds from the phloem tissue, drains nutrients, and inflicts physical damage to plants. Previously, it has been shown that SCA reproduction was low and high on sorghum SC265 and SC1345 plants, respectively, compared to RTx430, an elite sorghum male parental line (reference line). In this study, we focused on identifying the defense-related genes that confer resistance to SCA at early and late time points in sorghum plants with varied levels of SCA resistance. Results We used RNA-sequencing approach to identify the global transcriptomic responses to aphid infestation on RTx430, SC265, and SC1345 plants at early time points 6, 24, and 48 h post infestation (hpi) and after extended period of SCA feeding for 7 days. Aphid feeding on the SCA-resistant line upregulated the expression of 3827 and 2076 genes at early and late time points, respectively, which was relatively higher compared to RTx430 and SC1345 plants. Co-expression network analysis revealed that aphid infestation modulates sorghum defenses by regulating genes corresponding to phenylpropanoid metabolic pathways, secondary metabolic process, oxidoreductase activity, phytohormones, sugar metabolism and cell wall-related genes. There were 187 genes that were highly expressed during the early time of aphid infestation in the SCA-resistant line, including genes encoding leucine-rich repeat (LRR) proteins, ethylene response factors, cell wall-related, pathogenesis-related proteins, and disease resistance-responsive dirigent-like proteins. At 7 days post infestation (dpi), 173 genes had elevated expression levels in the SCA-resistant line and were involved in sucrose metabolism, callose formation, phospholipid metabolism, and proteinase inhibitors. Conclusions In summary, our results indicate that the SCA-resistant line is better adapted to activate early defense signaling mechanisms in response to SCA infestation because of the rapid activation of the defense mechanisms by regulating genes involved in monolignol biosynthesis pathway, oxidoreductase activity, biosynthesis of phytohormones, and cell wall composition. This study offers further insights to better understand sorghum defenses against aphid herbivory

    Resistance to greenbugs in the sorghum nested association mapping population

    Get PDF
    The greenbug, Schizaphis graminum, is a serious pest of sorghum (Sorghum bicolor). For the past several decades, resistant sorghum hybrids have been used to control greenbug populations. However, the durability of plant resistance is frequently challenged by evolution of new greenbug biotypes, and there is a continuous need for screening of resistant germplasm for its effective management in the field. Natural variation in sorghum plants/populations provides distinct approaches to identify novel sources of resistance against greenbugs. In this study, we used the recently developed sorghum nested association mapping (NAM) population parental lines to understand sources of sorghum resistance to greenbugs. Using choice and no-choice assays, we have identified SC265 and Segaolane as the resistant and susceptible lines, respectively, to greenbugs compared to the wild-type plants. The Electrical Penetration Graph (EPG) analysis revealed that the greenbugs spent significantly lesser time in the xylem and sieve element phases while feeding on the resistant NAM parental line, SC265, compared to the susceptible (Segaolane) and wild-type (RTx430) sorghum lines. In addition, the EPG results indicated that there is no significant difference in the time to first probe, time to reach first sieve element, pathway phase, and non-probing phase among the three sorghum plants, which suggests that the resistance factors present in the vascular tissues of the resistant line (SC265) potentially contribute to the resistance mechanisms against greenbugs. Overall, SC265 NAM parental line showed a combination of antixenotic and antibiotic-mediated resistance mechanisms against greenbugs, whereas the susceptible line Segaolane displayed the least resistance to greenbugs

    Greenbug feeding-induced resistance to sugarcane aphids in sorghum

    Get PDF
    Plants are attacked by multiple insect pest species and insect herbivory can alter plant defense mechanisms. The plant defense responses to a specific herbivore may also contribute to the herbivore growth/survival on plants. Feeding by one insect species can modulate the plant defenses, which can either facilitate or hamper the colonization of subsequent incoming insects. However, little is known about the effect of sequential herbivory on sorghum plants. In this study, we demonstrate that a specialist aphid, sugarcane aphid (SCA; Melanaphis sacchari) grows faster on sorghum than a generalist aphid species, greenbug (GB; Schizaphis graminum). We also determined how the pre-infestation of SCA on sorghum affected the invasion of GB and vice-versa. Our sequential herbivory experiments revealed that SCA reproduction was lower on GB-primed sorghum plants, however, the reverse was not true. To assess the differences in plant defenses induced by specialist vs. generalist aphids, we monitored the expression of salicylic acid (SA) and jasmonic acid (JA) marker genes, and flavonoid biosynthetic pathway genes after 48 h of aphid infestation. The results indicated that GB infestation induced higher expression of SA and JA-related genes, and flavonoid pathway genes (DFR, FNR, and FNSII) compared to SCA infestation. Overall, our results suggested that GB-infested plants activate the plant defenses via phytohormones and flavonoids at early time points and hampers the colonization of incoming SCA, as well as explain the reproductive success of SCA compared to GB

    Reprogramming of sorghum proteome in response to sugarcane aphid infestation

    Get PDF
    Sugarcane aphid (SCA; Melanaphis sacchari Zehntner) is a key piercing-sucking pest of sorghum (Sorghum bicolor) that cause significant yield losses. While feeding on host plants, complex signaling networks are invoked from recognition of insect attack to induction of plant defenses. Consequently, these signaling networks lead to the production of insecticidal compounds or limited access of nutrients to insects. Previously, several studies were published on the transcriptomics analysis of sorghum in response to SCA infestation, but no information is available on the physiological changes of sorghum at the proteome level. We used the SCA resistant sorghum genotype SC265 for the global proteomics analysis after 1 and 7 days of SCA infestation using the TMT-plex technique. Peptides matching a total of 4211 proteins were identified and 158 proteins were differentially expressed at day 1 and 7. Overall, proteome profiling of SC265 after SCA infestation at days 1 and 7 revealed the suppression of plant defense-related proteins and upregulation of plant defense and signaling-related proteins, respectively. The plant defense responses based on proteome data were validated using electrical penetration graph (EPG) technique to observe changes in aphid feeding. Feeding behavior analyses revealed that SCA spent significantly longer time in phloem phase on SCA infested plants for day 1 and lesser time in day 7 SCA infested sorghum plants, compared to their respective control plants. Overall, our study provides insights into underlying mechanisms that contribute to sorghum resistance to SCA

    Global Responses of Resistant and Susceptible Sorghum (\u3ci\u3eSorghum bicolor\u3c/i\u3e) to Sugarcane Aphid (\u3ci\u3eMelanaphis sacchari\u3c/i\u3e)

    Get PDF
    The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the expression profiles of uninfested plants at 5, 10, and 15 days post-infestation. The expression of genes from several functional categories were altered in aphid-infested susceptible plants, which included genes related to cell wall modification, photosynthesis and phytohormone biosynthesis. In the resistant line, only 31 genes were differentially expressed in the infested plants relative to uninfested plants over the same timecourse. However, network analysis of these transcriptomes identified a co-expression module where the expression of multiple sugar and starch associated genes were repressed in infested resistant plants at 5 and 10 days. Several nucleotide-binding-site, leucine-rich repeat (NBS-LRR) and disease resistance genes similar to aphid resistance genes identified in other plants are identified in the current study which may be involved in sugarcane aphid resistance. The electrical penetration graph (EPG) results indicated that sugarcane aphid spent approximately twice as long in non-probing phase, and approximately a quarter of time in phloem ingestion phase on the resistant and F1 plants compared to susceptible plant. Additionally, network analysis identified a phloem protein 2 gene expressed in both susceptible and resistant plants early (day 5) of infestation, which may contribute to defense against aphid feeding within sieve elements. The resistant line RTx2783 displayed both antixenosis and antibiosis modes of resistance based on EPG and choice bioassays between susceptible, resistant and F1 plants. Aphid resistance from RTx2783 segregated as a single dominant locus in the F2 generation, which will enable breeders to rapidly develop sugarcane aphid-resistant hybrids using RTx2783 as the male parent

    Insect and Pest Management for Sustaining Crop Production Under Changing Climatic Patterns of Drylands

    Get PDF
    Climate change is alarming, particularly for agriculturists as it severely impacts the development, distribution, and survival of insects and pests, affecting crop production globally. Over time, climate change is drastically tumbling the crop productivity in all the cropping systems, whereas the dryland agriculture with existing low productivity is immensely hit. While all the existing species in drylands, including humans, are coping with extreme climate variations for millennia, future climate change predictions put dryland agriculture in a threat zone. Drylands support 38% of the world’s population; therefore, climate change coupled with population growth and global food security draws the attention of scientists towards sustainable crop production under changing trends. The intermingling and intermixing of various biological, hydrological, and geographical systems plus the anthropogenic factors continuously amplify the changes in the dryland systems. All of this brings us to one challenge: developing pest management strategies suitable for changing climatic patterns. In this complex agrology framework, integrated pest management (IPM) strategies, especially those involving early monitoring of pests using prediction models, are a way to save the show. In this chapter, we will summarize the direct and indirect effects of climate change on crop production, the biology of insect pests, the changing pest scenarios, the efficacy of current pest management tactics, and the development of next-generation crop protection products. Finally, we will provide a perspective on the integration of best agronomic practices and crop protection measures to achieve the goal of sustainable crop production under changing climatic trends of drylands

    OPDA regulates maize defense against aphids

    Get PDF
    Copyright © 2019 American Society of Plant Biologists. DOI:10.1104/pp.18.0147

    Technological Advances to Address Current Issues in Entomology: 2020 Student Debates

    Get PDF
    The 2020 Student Debates of the Entomological Society of America (ESA) were live-streamed during the Virtual Annual Meeting to debate current, prominent entomological issues of interest to members. The Student Debates Subcommittee of the National ESA Student Affairs Committee coordinated the student efforts throughout the year and hosted the live event. This year, four unbiased introductory speakers provided background for each debate topic while four multi-university teams were each assigned a debate topic under the theme ‘Technological Advances to Address Current Issues in Entomology’. The two debate topics selected were as follows: 1) What is the best taxonomic approach to identify and classify insects? and 2) What is the best current technology to address the locust swarms worldwide? Unbiased introduction speakers and debate teams began preparing approximately six months before the live event. During the live event, teams shared their critical thinking and practiced communication skills by defending their positions on either taxonomical identification and classification of insects or managing the damaging outbreaks of locusts in crops

    Global Responses of Resistant and Susceptible Sorghum (Sorghum bicolor) to Sugarcane Aphid (Melanaphis sacchari)

    Get PDF
    The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the expression profiles of uninfested plants at 5, 10, and 15 days post-infestation. The expression of genes from several functional categories were altered in aphid-infested susceptible plants, which included genes related to cell wall modification, photosynthesis and phytohormone biosynthesis. In the resistant line, only 31 genes were differentially expressed in the infested plants relative to uninfested plants over the same timecourse. However, network analysis of these transcriptomes identified a co-expression module where the expression of multiple sugar and starch associated genes were repressed in infested resistant plants at 5 and 10 days. Several nucleotide-binding-site, leucine-rich repeat (NBS-LRR) and disease resistance genes similar to aphid resistance genes identified in other plants are identified in the current study which may be involved in sugarcane aphid resistance. The electrical penetration graph (EPG) results indicated that sugarcane aphid spent approximately twice as long in non-probing phase, and approximately a quarter of time in phloem ingestion phase on the resistant and F1 plants compared to susceptible plant. Additionally, network analysis identified a phloem protein 2 gene expressed in both susceptible and resistant plants early (day 5) of infestation, which may contribute to defense against aphid feeding within sieve elements. The resistant line RTx2783 displayed both antixenosis and antibiosis modes of resistance based on EPG and choice bioassays between susceptible, resistant and F1 plants. Aphid resistance from RTx2783 segregated as a single dominant locus in the F2 generation, which will enable breeders to rapidly develop sugarcane aphid-resistant hybrids using RTx2783 as the male parent
    corecore