4,198 research outputs found
Amorphization of Vortex Matter and Reentrant Peak Effect in YBaCuO
The peak effect (PE) has been observed in a twinned crystal of
YBaCuO for Hc in the low field range, close to
the zero field superconducting transition temperature (T(0)) . A sharp
depinning transition succeeds the peak temperature T of the PE. The PE
phenomenon broadens and its internal structure smoothens out as the field is
increased or decreased beyond the interval between 250 Oe and 1000 Oe.
Moreover, the PE could not be observed above 10 kOe and below 20 Oe. The locus
of the T(H) values shows a reentrant characteristic with a nose like
feature located at T(H)/T(0)0.99 and H100 Oe (where
the FLL constant apenetration depth ). The upper part of
the PE curve (0.5 kOeH10 kOe) can be fitted to a melting scenario with
the Lindemann number c0.25. The vortex phase diagram near T(0)
determined from the characteristic features of the PE in
YBaCuO(Hc) bears close resemblance to that in
the 2H-NbSe system, in which a reentrant PE had been observed earlier.Comment: 15 pages and 7 figure
Modelling and experimental investigation of process parameters in WEDM of WC-5.3 % Co using response surface methodology
Tungsten carbide-cobalt (WC-Co) composite is a difficult-to-machine material owing to its excellent strength and hardness at elevated temperature. Wire electrical discharge machining (WEDM) is a best alternative for machining of WC-Co composite into intricate and complex shapes. Efficient machining of WC-Co composite on WEDM is a challenging task since it involves large numbers of parameters. Therefore, in present work, experimental investigation has been carried out to determine the influence of important WEDM parameters on machining performance of WC-Co composite. Response surface methodology, which is a collection of mathematical and experimental techniques, was utilised to obtain the experimental data. Using face-centered central composite design, experiments were conducted to investigate and correlate the four input parameters: pulse-on time, pulse-off time, servo voltage and wire feed for three output performance characteristics – cutting speed (CS), surface roughness (SR) and radial overcut (RoC). Using analysis of variance on experimental data, quadratic vs. two-factor interaction (2FI) models have been suggested for CS and RoC while two-factor interaction (2FI) has been proposed for SR. Using these mathematical models, optimal parameters can be determined easily for desired performance characteristics, and hence a trade-off can be made among different performance characteristics
Nested quantum search and NP-complete problems
A quantum algorithm is known that solves an unstructured search problem in a
number of iterations of order , where is the dimension of the
search space, whereas any classical algorithm necessarily scales as . It
is shown here that an improved quantum search algorithm can be devised that
exploits the structure of a tree search problem by nesting this standard search
algorithm. The number of iterations required to find the solution of an average
instance of a constraint satisfaction problem scales as , with
a constant depending on the nesting depth and the problem
considered. When applying a single nesting level to a problem with constraints
of size 2 such as the graph coloring problem, this constant is
estimated to be around 0.62 for average instances of maximum difficulty. This
corresponds to a square-root speedup over a classical nested search algorithm,
of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure
New Samarium and Neodymium based admixed ferromagnets with near zero net magnetization and tunable exchange bias field
Rare earth based intermetallics, SmScGe and NdScGe, are shown to exhibit near
zero net magnetization with substitutions of 6 to 9 atomic percent of Nd and 25
atomic percent of Gd, respectively. The notion of magnetic compensation in them
is also elucidated by the crossover of zero magnetization axis at low magnetic
fields (less than 103 Oe) and field-induced reversal in the orientation of the
magnetic moments of the dissimilar rare earth ions at higher magnetic fields.
These magnetically ordered materials with no net magnetization and appreciable
conduction electron polarization display an attribute of an exchange bias
field, which can be tuned. The attractively high magnetic ordering temperatures
of about 270 K, underscore the importance of these materials for potential
applications in spintronics.Comment: 6 page text + 5 figure
Vortex Phase Diagram of weakly pinned YBaCuO for H c
Vortex phase diagram in a weakly pinned crystal of YBCO for H c
is reviewed in the light of a recent elucidation of the process of `inverse
melting' in a Bismuth cuprate system and the imaging of an interface between
the ordered and the disordered regions across the peak effect in 2H-NbSe.
In the given YBCO crystal, a clear distinction can be made between the second
magnetization peak (SMP) and the peak effect (PE) between 65 K and 75 K. The
field region between the peak fields of the SMP (H) and the onset
fields of the PE (H)is not only continuously connected to the Bragg
glass phase at lower fields but it is also sandwiched between the higher
temperature vortex liquid phase and the lower temperature vortex glass phase.
Thus, an ordered vortex state between H and H can get
transformed to the (disordered) vortex liquid state on heating as well as to
the (disordered) vortex glass state on cooling, a situation analogous to the
thermal melting and the inverse melting phenomenon seen in a Bismuth cuprate.Comment: Presented in IWCC-200
Critical behavior at de-pinning of a driven disordered vortex matter in 2H-NbS2
We report unusual jamming in driven ordered vortex flow in 2H-NbS2.
Reinitiating movement in these jammed vortices with a higher driving force, and
halting it thereafter once again with a reduction in drive, unfolds a critical
behavior centered around the de-pinning threshold via divergences in the
lifetimes of transient states, validating the predictions of a recent
simulation study, which also pointed out a correspondence between plastic
de-pinning in vortex matter and the notion of random organization proposed in
the context of sheared colloids undergoing diffusive motion.Comment: Phys. Rev. B (in press, 2012). The paper has 14 pages of Text+ Refs.
with 4 figures. (Note as some of the figure files are large in size, to
enable faster download, the file size has been kept small and the figure
resolution are low. The online version of the paper to appear in PRB will
contain the higher resolution figures
Energy and Efficiency of Adiabatic Quantum Search Algorithms
We present the results of a detailed analysis of a general, unstructured
adiabatic quantum search of a data base of items. In particular we examine
the effects on the computation time of adding energy to the system. We find
that by increasing the lowest eigenvalue of the time dependent Hamiltonian {\it
temporarily} to a maximum of , it is possible to do the
calculation in constant time. This leads us to derive the general theorem which
provides the adiabatic analogue of the bound of conventional quantum
searches. The result suggests that the action associated with the oracle term
in the time dependent Hamiltonian is a direct measure of the resources required
by the adiabatic quantum search.Comment: 6 pages, Revtex, 1 figure. Theorem modified, references and comments
added, sections introduced, typos corrected. Version to appear in J. Phys.
Grover's Quantum Search Algorithm for an Arbitrary Initial Mixed State
The Grover quantum search algorithm is generalized to deal with an arbitrary
mixed initial state. The probability to measure a marked state as a function of
time is calculated, and found to depend strongly on the specific initial state.
The form of the function, though, remains as it is in the case of initial pure
state. We study the role of the von Neumann entropy of the initial state, and
show that the entropy cannot be a measure for the usefulness of the algorithm.
We give few examples and show that for some extremely mixed initial states
carrying high entropy, the generalized Grover algorithm is considerably faster
than any classical algorithm.Comment: 4 pages. See http://www.cs.technion.ac.il/~danken/MSc-thesis.pdf for
extended discussio
- …