63 research outputs found
Dynamics of duplicated gene regulatory networks governing cotton fiber development following polyploidy
Cotton fiber development entails complex genome-wide gene regulatory networks (GRN) that remain mostly unexplored. Here we present integrative analyses of fiber GRNs using public RNA-seq datasets, integrated with multi-omics genomic, transcriptomic, and cistromic data. We detail the fiber coexpression dynamics and regulatory connections, validating findings with external datasets and transcription factor (TF) binding site data. We elucidate previously uncharacterized TFs that regulate genes involved in fiber-related functions and cellulose synthesis, and identify the regulatory role of two homoeologous G2-like transcription factors on fiber length. Analysis of duplicated gene expression and network relationships in allopolyploid cotton, which has two co-resident genomes (A, D), revealed novel aspects of asymmetric subgenomic developmental contributions. Whereas D-based homoeolog pairs drive higher overall gene expression from the D subgenome, TFs from the A subgenome play a preferential regulatory role in the fiber gene regulatory network. Following allopolyploid formation, it appears that the trans-regulatory roles of TFs diversified more rapidly between homoeologs than did the cis-regulatory elements of their target genes. Our approach underscores the utility of network analysis for detection of master regulators and provides fresh perspectives on fiber development and polyploid functional genomics, through the lens of co-expression and GRN dynamics.This preprint is made available through Research Square at doi:https://doi.org/10.21203/rs.3.rs-4942946/v1
Independent Domestication of Two Old World Cotton Species
Domesticated cotton species provide raw material for the majority of the world\u27s textile industry. Two independent domestication events have been identified in allopolyploid cotton, one in Upland cotton ( Gossypium hirsutum L.) and the other to Egyptian cotton ( Gossypium barbadense L.). However, two diploid cotton species, Gossypium arboreum L. and Gossypium herbaceum L., have been cultivated for several millennia, but their status as independent domesticates has long been in question. Using genome resequencing data, we estimated the global abundance of various repetitive DNAs. We demonstrate that, despite negligible divergence in genome size, the two domesticated diploid cotton species contain different, but compensatory, repeat content and have thus experienced cryptic alterations in repeat abundance despite equivalence in genome size. Evidence of independent origin is bolstered by estimates of divergence times based on molecular evolutionary analysis of f7,000 orthologous genes, for which synonymous substitution rates suggest that G. arboreum and G. herbaceum last shared a common ancestor approximately 0.4–2.5 Ma. These data are incompatible with a shared domestication history during the emergence of agriculture and lead to the conclusion that G. arboreum and G. herbaceum were each domesticated independently
The Gossypium longicalyx genome as a resource for cotton breeding and evolution
Cotton is an important crop that has made significant gains in production over the last century. Emerging pests such as the reniform nematode have threatened cotton production. The rare African diploid specie
Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement
Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement
Origin and diversity of the wild cottons (Gossypium hirsutum) of Mound Key, Florida
Elucidating genetic diversity within wild forms of modern crops is essential for understanding domestication and the possibilities of wild germplasm utilization. Gossypium hirsutum is a predominant source of natural plant fibers and the most widely cultivated cotton species. Wild forms of G. hirsutum are challenging to distinguish from feral derivatives, and truly wild populations are uncommon. Here we characterize a population from Mound Key Archaeological State Park, Florida using genome-wide SNPs extracted from 25 individuals over three sites. Our results reveal that this population is genetically dissimilar from other known wild, landrace, and domesticated cottons, and likely represents a pocket of previously unrecognized wild genetic diversity. The unexpected level of divergence between the Mound Key population and other wild cotton populations suggests that the species may harbor other remnant and genetically distinct populations that are geographically scattered in suitable habitats throughout the Caribbean. Our work thus has broader conservation genetic implications and suggests that further exploration of natural diversity in this species is warranted.This article is published as Ning, W., Rogers, K.M., Hsu, CY. et al. Origin and diversity of the wild cottons (Gossypium hirsutum) of Mound Key, Florida. Sci Rep 14, 14046 (2024). https://doi.org/10.1038/s41598-024-64887-8. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted
Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton.
Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants. [Abstract copyright: © 2023. The Author(s).
Genetic Regulatory Perturbation of Gene Expression Impacted by Genomic Introgression in Fiber Development of Allotetraploid Cotton
Interspecific genomic introgression is an important evolutionary process with respect to the generation of novel phenotypic diversity and adaptation. A key question is how gene flow perturbs gene expression networks and regulatory interactions. Here, an introgression population of two species of allopolyploid cotton (Gossypium) to delineate the regulatory perturbations of gene expression regarding fiber development accompanying fiber quality change is utilized. De novo assembly of the recipient parent (G. hirsutum Emian22) genome allowed the identification of genomic variation and introgression segments (ISs) in 323 introgression lines (ILs) from the donor parent (G. barbadense 3–79). It documented gene expression dynamics by sequencing 1,284 transcriptomes of developing fibers and characterized genetic regulatory perturbations mediated by genomic introgression using a multi-locus model. Introgression of individual homoeologous genes exhibiting extreme low or high expression bias can lead to a parallel expression bias in their non-introgressed duplicates, implying a shared yet divergent regulatory fate of duplicated genes following allopolyploidy. Additionally, the IL N182 with improved fiber quality is characterized, and the candidate gene GhFLAP1 related to fiber length is validated. This study outlines a framework for understanding introgression-mediated regulatory perturbations in polyploids, and provides insights for targeted breeding of superior upland cotton fiber.This article is published as Chen, Xinyuan, Xiubao Hu, Guo Li, Corrinne E. Grover, Jiaqi You, Ruipeng Wang, Zhenping Liu et al. "Genetic Regulatory Perturbation of Gene Expression Impacted by Genomic Introgression in Fiber Development of Allotetraploid Cotton." Advanced Science (2024): 2401549. doi:10.1002/advs.202401549. © 2024 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
CenH3 evolution in diploids and polyploids of three angiosperm genera
BACKGROUND: Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene. In addition, we compare expression profiles and alternative splicing patterns for CenH3 in representatives of each genus. RESULTS: All three genera retain both duplicated CenH3 copies, while Brassica and Gossypium exhibit pronounced homoeologous expression level bias. Comparisons among genera reveal shared and unique aspects of CenH3 evolution, variable levels of diversifying selection in different CenH3 domains, and that alternative splicing contributes significantly to CenH3 diversity. CONCLUSIONS: Since the N terminus is subject to diversifying selection but the DNA binding domains do not appear to be, rapidly evolving centromere sequences are unlikely to be the primary driver of CenH3 sequence diversification. At present, the functional explanation for the diversity generated by both conventional protein evolution in the N terminal domain, as well as alternative splicing, remains unexplained. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0383-3) contains supplementary material, which is available to authorized users
- …