113 research outputs found

    Synthesis of Corrosion-resistant Nanocrystalline Nickle-copper Alloy Coatings by Pulse-plating Technique

    Get PDF
    Bright and smooth nanocrystalline Monel-type Ni-Cu alloy gets deposited from complex citrate electrolyte by pulse electrolysis. Transmission electron microscopy studies have revealedthat the deposited Ni-Cu alloy was nanocrystalline in nature and it comprised a two-phase (fcc+Ll,) mixture. The presence of twins could be seen in the nanocrystals. The Ni-Cu alloysprepared by pulse electrolysis were finer grained (- 2.5-28.5 nm) than those deposited by direct current method. Nelson-Riley function has been used to calculate the lattice parameters for both the pulse current-plated and direct current-plated alloys from x-ray diffraction analysis. The microhardness values for pulse current-plated alloys were higher than for the direct currentplated alloys. The internal stresses of both the pulse current-deposited and the direct currentdeposited alloys have also been measured; the values were lower for pulse current-plated alloys. Potentiodynamic polarisation studies were carried out in aerated and deaerated neutral 3.0 Wt per cent NaCl solution and instantaneous corrosion current density of the plated alloy was determined and compared with the Monel-400 alloy. It was found that nanocrystalline pulse current-N,-35 8 Wt p;r cent copper alloy uxh~bitedlo wer instantaneous value of corros~onc urrent densirv than that of soeclrnens with direct current method and Monel-400 allov The d~ssolut~on ~ ~~~~-~ behaviour ofthe deposited nanocrystalline material was found to be more like general corrosion rather than localised corrosion as in the case of Monel-400 alloy

    Engineering Entanglement between two cavity modes

    Full text link
    We present scheme for generation of entanglement between different modes of radiation field inside high-Q superconducting cavities. Our scheme is based on the interaction of a three-level atom with the cavity field for pre-calculated interaction times with each mode. This work enables us to generate complete set of Bell basis states and GHZ state

    Quantum Search with Two-atom Collisions in Cavity QED

    Full text link
    We propose a scheme to implement two-qubit Grover's quantum search algorithm using Cavity Quantum Electrodynamics. Circular Rydberg atoms are used as quantum bits (qubits). They interact with the electromagnetic field of a non-resonant cavity . The quantum gate dynamics is provided by a cavity-assisted collision, robust against decoherence processes. We present the detailed procedure and analyze the experimental feasibility.Comment: 4 pages, 2 figure

    Schemes of implementation in NMR of quantum processors and Deutsch-Jozsa algorithm by using virtual spin representation

    Full text link
    Schemes of experimental realization of the main two qubit processors for quantum computers and Deutsch-Jozsa algorithm are derived in virtual spin representation. The results are applicable for every four quantum states allowing the required properties for quantum processor implementation if for qubit encoding virtual spin representation is used. Four dimensional Hilbert space of nuclear spin 3/2 is considered in details for this aimComment: 15 pages, 3 figure

    Quantum key distribution for d-level systems with generalized Bell states

    Get PDF
    Using the generalized Bell states and controlled not gates, we introduce an enatanglement-based quantum key distribution (QKD) of d-level states (qudits). In case of eavesdropping, Eve's information gain is zero and a quantum error rate of (d-1)/d is introduced in Bob's received qudits, so that for large d, comparison of only a tiny fraction of received qudits with the sent ones can detect the presence of Eve.Comment: 8 pages, 3 figures, REVTEX, references added, extensive revision, to appear in Phys. Rev.

    Use of Quadrupolar Nuclei for Quantum Information processing by Nuclear Magnetic Resonance: Implementation of a Quantum Algorithm

    Get PDF
    Physical implementation of Quantum Information Processing (QIP) by liquid-state Nuclear Magnetic Resonance (NMR), using weakly coupled spin-1/2 nuclei of a molecule, is well established. Nuclei with spin>>1/2 oriented in liquid crystalline matrices is another possibility. Such systems have multiple qubits per nuclei and large quadrupolar couplings resulting in well separated lines in the spectrum. So far, creation of pseudopure states and logic gates have been demonstrated in such systems using transition selective radio-frequency pulses. In this paper we report two novel developments. First, we implement a quantum algorithm which needs coherent superposition of states. Second, we use evolution under quadrupolar coupling to implement multi qubit gates. We implement Deutsch-Jozsa algorithm on a spin-3/2 (2 qubit) system. The controlled-not operation needed to implement this algorithm has been implemented here by evolution under the quadrupolar Hamiltonian. This method has been implemented for the first time in quadrupolar systems. Since the quadrupolar coupling is several orders of magnitude greater than the coupling in weakly coupled spin-1/2 nuclei, the gate time decreases, increasing the clock speed of the quantum computer.Comment: 16 pages, 3 figure

    Reducing the communication complexity with quantum entanglement

    Full text link
    We propose a probabilistic two-party communication complexity scenario with a prior nonmaximally entangled state, which results in less communication than that is required with only classical random correlations. A simple all-optical implementation of this protocol is presented and demonstrates our conclusion.Comment: 4 Pages, 2 Figure

    Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search

    Full text link
    By applying Grover's quantum search algorithm to the lattice algorithms of Micciancio and Voulgaris, Nguyen and Vidick, Wang et al., and Pujol and Stehl\'{e}, we obtain improved asymptotic quantum results for solving the shortest vector problem. With quantum computers we can provably find a shortest vector in time 21.799n+o(n)2^{1.799n + o(n)}, improving upon the classical time complexity of 22.465n+o(n)2^{2.465n + o(n)} of Pujol and Stehl\'{e} and the 22n+o(n)2^{2n + o(n)} of Micciancio and Voulgaris, while heuristically we expect to find a shortest vector in time 20.312n+o(n)2^{0.312n + o(n)}, improving upon the classical time complexity of 20.384n+o(n)2^{0.384n + o(n)} of Wang et al. These quantum complexities will be an important guide for the selection of parameters for post-quantum cryptosystems based on the hardness of the shortest vector problem.Comment: 19 page

    Quantum computing with mixed states

    Full text link
    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.Comment: 2 figures, 52 reference

    Quantum key distribution without alternative measurements

    Full text link
    Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to generate the same sequence of random bits in two remote places. A quantum key distribution protocol based on this idea is described. The scheme exhibits the following features. (a) It does not require that Alice and Bob choose between alternative measurements, therefore improving the rate of generated bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of arbitrary length using a single quantum system (three EPR pairs), instead of a long sequence of them. (c) Detecting Eve requires the comparison of fewer bits. (d) Entanglement is an essential ingredient. The scheme assumes reliable measurements of the Bell operator.Comment: REVTeX, 5 pages, 2 figures. Published version with some comment
    corecore