4,051 research outputs found

    Experimental studies of crystal-melt differentiation in planetary basalt compositions

    Get PDF
    An important process that controls the evolution of magmas on and within planetary bodies is crystal-melt differentiation. Experimental studies of silicate melt solidification were performed on several planetary and terrestrial melt compositions, and experiments on one of these compositions in the microgravity environment of the space station would provide an opportunity to understand the factors that control crystal growth and crystal-melt exchange processes at crystal-melt interfaces during solidification. Experimental requirements are presented

    Kinetics of mineral condensation in the solar nebula

    Get PDF
    A natural extension of the type of gas-mineral-melt condensation experiments is to study the gas-mineral-melt reaction process by controlling the reaction times of appropriate gas compositions with silicate materials. In a condensing and vaporizing gas-solid system, important processes that could influence the composition of and speciation in the gas phase are the kinetics of vaporization of components from silicate crystals and melts. The high vacuum attainable in the space station would provide an environment for studying these processes at gas pressures much lower than those obtainable in experimental devices operated at terrestrial conditions in which the gas phase and mineral or melt would be allowed to come to exchange equilibrium. Further experiments would be performed at variable gas flow rates to simulate disequilibrium vapor fractionation. In this type of experiment it is desirable to analyze directly the species in the gas phase in equilibrium with the condensed silicate material. This analytical method would provide a direct determination of the species present in the gas phase. Currently, the notion of gas speciation is based on calculations from thermodynamic data. The proposed experiments require similar furnace designs and use similar experimental starting compositions, pressures, and temperatures as those described by Mysen

    Phase Equilibrium Investigations of Planetary Materials

    Get PDF
    This grant provided funds to carry out experimental studies designed to illuminate the conditions of melting and chemical differentiation that has occurred in planetary interiors. Studies focused on the conditions of mare basalt generation in the moon's interior and on processes that led to core formation in the Shergottite Parent Body (Mars). Studies also examined physical processes that could lead to the segregation of metal-rich sulfide melts in an olivine-rich solid matrix. The major results of each paper are discussed below and copies of the papers are attached as Appendix I

    Petrologic constraints on the surface processes on asteroid 4 Vesta and on excavation depths of diogenite fragments

    Get PDF
    The eucrite-howardite-diogenite meteorite groups are though to be related by magmatic processes. Asteroid 4 Vesta has been proposed as the parent body for these basaltic achondrite meteorites. The similarity of the planetesimal's surface composition to eucrite and diogenite meteorites and the large size of the asteroid (r = 250 km) make it an attractive source, but its position in the asteroid belt far from the known resonances from which meteorites originate make a relation between Vesta and eucrite-howardite-giogenite group problematic. It has been proposed that diogenites are low-Ca pyroxene-rich cumulates that crystallized from a magnesian parent (identified in howardite breccias), and this crystallization process led to evolved eucrite derivative magmas. This eucrite-diogenite genetic relationship places constraints on the physical conditions under which crystallization occurred. Elevated pressure melting experiments on magnesian eucrite parent compositions show that the minimum pressure at which pyroxene crystallization could lead to the observed compositions of main series eucrites is 500 bars, equivalent to a depth of 135 km in a 4 Vesta-sized eucrite parent body. Therefore, the observation of diogenite on the surface of 4 Vesta requires a post-crystallization process that excavates diogenite cumulate from depth. The discovery of diogenite asteroidal fragments is consistent with an impact event on 4 Vesta that penetrated the deep interior of this planetesimal

    Experiments on liquid immiscibility along tholeiitic liquid lines of descent

    Full text link
    Crystallization experiments have been conducted on compositions along tholeiitic liquid lines of descent to define the compositional space for the development of silicate liquid immiscibility. Starting materials have 46-56 wt% SiO 2, 11.7-17.7 wt% FeO tot, and Mg-number between 0.29 and 0.36. These melts fall on the basaltic trends relevant for Mull, Iceland, Snake River Plain lavas and for the Sept Iles layered intrusion, where large-scale liquid immiscibility has been recognized. At one atmosphere under anhydrous conditions, immiscibility develops below 1,000-1,020°C in all of these compositionally diverse lavas. Extreme iron enrichment is not necessary; immiscibility also develops during iron depletion and silica enrichment. Variations in melt composition control the development of silicate liquid immiscibility along the tholeiitic trend. Elevation of Na 2O + K 2O + P 2O 5 + TiO 2 promotes the development of two immiscible liquids. Increasing melt CaO and Al 2O 3 stabilizes a single-liquid field. New data and published phase equilibria show that anhydrous, low-pressure fractional crystallization is the most favorable condition for unmixing during differentiation. Pressure inhibits immiscibility because it expands the stability field of high-Ca clinopyroxene, which reduces the proportion of plagioclase in the crystallizing assemblage, thus enhancing early iron depletion. Magma mixing between primitive basalt and Fe-Ti-P-rich ferrobasalts can serve to elevate phosphorous and alkali contents and thereby promote unmixing. Water might decrease the temperature and size of the two-liquid field, potentially shifting the binodal (solvus) below the liquidus, leading the system to evolve as a single-melt phase. © 2012 Springer-Verlag

    Experimental Constraints on the Origin of Lunar High-Ti Ultramafic Glasses

    Get PDF
    Phase equilibria and dissolution rate experiments are used to develop a petrogenetic model for the high-Ti lunar ultramafic glasses. Near-liquidus phase relations of the Apollo 14 black glass, the most Ti-rich lunar ultramafic glass, are determined to 2.2-GPa. The liquidus is saturated with Cr-spinel at 1-atm, olivine between approximately 0.5- and 1.5-GPa, and low-Ca pyroxene + Cr-spinel above 1.5-GPa. Ilmenite does not crystallize near the liquidus and implies that high-Ti ultramafic glasses are not produced by melting of an ilmenite-saturated source. We infer that high-Ti ultramafic magmas are derived from low-Ti ultramafic parent magmas by assimilation of ilmenite +/- clinopyroxene +/- urKREEP +/- pigeonite in the shallow lunar interior. Heat is provided by adiabatic ascent of the low-Ti ultramafic primary magmas from the deeper lunar interior and crystallization of olivine during assimilation. The assimilation reaction is modeled by mass balance and requires that ilmenite and high-Ca pyroxene are assimilated in a approximately 3:1 ratio, a much higher ratio than the proportion in which these minerals are thought to exist in the lunar interior. In an effort to understand the kinetic controls on this reaction, the dissolution of ilmenite is examined experimentally in both low- and high-Ti lunar magmas. We find that ilmenite dissolves incongruently to Cr-spinel and a high-Ti melt. The dissolution reaction proceeds by a diffusion-controlled mechanism. An assimilation model for the origin of high-Ti melts is developed that leaves the magma ocean cumulates in their initial stratigraphic positions and obviates source hybridization models that require lunar overturn

    Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series

    Full text link
    peer reviewedWe present major element compositions of basalts and their differentiation products for some major tholeiitic series. The dry, low-pressure liquid lines of descent are shown to approach or intersect the experimentally-defined compositional space of silicate liquid immiscibility. Ferrobasalt-rhyolite unmixing along tholeiitic trends in both volcanic and plutonic environments is supported by worldwide occurrence of immiscible globules in the mesostasis of erupted basalts, unmixed melt inclusions in cumulus phases of major layered intrusions such as Skaergaard and Sept Iles, and oxide-rich ferrogabbros closely associated with plagiogranites in the lower oceanic crust. Liquid immiscibility is promoted by low-pressure, anhydrous fractional crystallization that drives the low Al2O3, high FeO liquids into the two-liquid field. Kinetic controls can be important in the development of two-liquid separation. The undercooling that occurs at the slow cooling rates of plutonic environments promotes early development of liquid immiscibility at higher temperature. In contrast rapid cooling in erupted lavas leads to large undercoolings and liquid immiscibility develops at significantly lower temperatures. Unmixing leads to the development of a compositional gap characterized by the absence of intermediate compositions, a feature of many tholeiitic provinces. The compositions of experimental unmixed silica-rich melts coincide with those of natural rhyolites and plagiogranites with high FeOtot and low Al2O3, suggesting the potential role of large-scale separation of immiscible Si-rich liquid in the petrogenesis of late-stage residual melts. No trace of the paired ferrobasaltic melt is found in volcanic environments because of its uneruptable characteristics. Instead, Fe-Ti±P-rich gabbros are the cumulate products of immiscible Fe-rich melts in plutonic settings. The immiscibility process may be difficult to identify because both melts crystallize the same phases with the same compositions. The two liquids might form incompletely segregated emulsions so that both liquids continue to exchange as they crystallize and remain in equilibrium. Even if segregated, both melts evolve on the binodal surface and exsolve continuously with decreasing temperature. The two liquids do not differentiate independently and keep crystallizing the same phases with differentiation. Further evolution by fractional crystallization potentially drives the bulk liquid out of the two-liquid field so that very late-stage liquids could evolve into the single melt phase stability field. © 2013 Elsevier Ltd

    Phase correlation of laser waves with arbitrary frequency spacing

    Full text link
    The theoretically predicted correlation of laser phase fluctuations in Lambda-type interaction schemes is experimentally demonstrated. We show, that the mechanism of correlation in a Lambda scheme is restricted to high frequency noise components, whereas in a double-Λ\Lambda scheme, due to the laser phase locking in closed-loop interaction, it extends to all noise frequencies. In this case the correlation is weakly sensitive to coherence losses. Thus the double-Lambda scheme can be used to correlate e.m. fields with carrier frequency differences beyond the GHz regime.Comment: 4 pages, 4 figure

    Establishing the liquid phase equilibrium of angrites to constrain their petrogenesis

    Get PDF
    Angrites are a series of differentiat-ed meteorites, extremely silica undersaturated and with unusally high Ca and Al contents [1]. They are thought to originate from a small planetesimal parent body of ~ 100-200 km in radius ([2-3]), can be either plutonic (i.e., cumulates) or volcanic (often referred to as quenched) in origin, and their old formation ages (4 to 11 Myr after CAIs) have made them prime anchors to tie the relative chronologies inferred from short-lived radionuclides (e.g., Al-Mg, Mn-Cr, Hf-W) to the absolute Pb-Pb clock [4]. They are also the most vola-tile element-depleted meteorites available, displaying a K-depletion of a factor of 110 relative to CIs

    Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions

    Full text link
    We consider invariant Riemannian metrics on compact homogeneous spaces G/H where an intermediate subgroup K between G and H exists, so that the homogeneous space G/H is the total space of a Riemannian submersion. We study the question as to whether enlarging the fibers of the submersion by a constant scaling factor retains the nonnegative curvature in the case that the deformation starts at a normal homogeneous metric. We classify triples of groups (H,K,G) where nonnegative curvature is maintained for small deformations, using a criterion proved by Schwachh\"ofer and Tapp. We obtain a complete classification in case the subgroup H has full rank and an almost complete classification in the case of regular subgroups.Comment: 23 pages; minor revisions, to appear in Geometriae Dedicat
    corecore