5,309 research outputs found

    Mantle melting as a function of water content beneath back-arc basins

    Get PDF
    Subduction zone magmas are characterized by high concentrations of H_(2)O, presumably derived from the subducted plate and ultimately responsible for melting at this tectonic setting. Previous studies of the role of water during mantle melting beneath back-arc basins found positive correlations between the H_(2)O concentration of the mantle (H_(2)O_o ) and the extent of melting (F), in contrast to the negative correlations observed at mid-ocean ridges. Here we examine data compiled from six back-arc basins and three mid-ocean ridge regions. We use TiO_2 as a proxy for F, then use F to calculate H_(2)O_o from measured H_(2)O concentrations of submarine basalts. Back-arc basins record up to 0.5 wt % H_(2)O or more in their mantle sources and define positive, approximately linear correlations between H_(2)O_o and F that vary regionally in slope and intercept. Ridge-like mantle potential temperatures at back-arc basins, constrained from Na-Fe systematics (1350°–1500°C), correlate with variations in axial depth and wet melt productivity (∼30–80% F/wt % H_(2)O_o ). Water concentrations in back-arc mantle sources increase toward the trench, and back-arc spreading segments with the highest mean H_(2)O_o are at anomalously shallow water depths, consistent with increases in crustal thickness and total melt production resulting from high H_(2)O. These results contrast with those from ridges, which record low H_(2)O_o (<0.05 wt %) and broadly negative correlations between H_(2)O_o and F that result from purely passive melting and efficient melt focusing, where water and melt distribution are governed by the solid flow field. Back-arc basin spreading combines ridge-like adiabatic melting with nonadiabatic mantle melting paths that may be independent of the solid flow field and derive from the H_(2)O supply from the subducting plate. These factors combine significant quantitative and qualitative differences in the integrated influence of water on melting phenomena in back-arc basin and mid-ocean ridge settings

    Thermal structure and exhumation history of the Lesser Himalaya in central Nepal

    Get PDF
    The Lesser Himalaya (LH) consists of metasedimentary rocks that have been scrapped off from the underthrusting Indian crust and accreted to the mountain range over the last ~20 Myr. It now forms a significant fraction of the Himalayan collisional orogen. We document the kinematics and thermal metamorphism associated with the deformation and exhumation of the LH, combining thermometric and thermochronological methods with structural geology. Peak metamorphic temperatures estimated from Raman spectroscopy of carbonaceous material decrease gradually from 520°–550°C below the Main Central Thrust zone down to less than 330°C. These temperatures describe structurally a 20°–50°C/km inverted apparent gradient. The Ar muscovite ages from LH samples and from the overlying crystalline thrust sheets all indicate the same regular trend; i.e., an increase from about 3–4 Ma near the front of the high range to about 20 Ma near the leading edge of the thrust sheets, about 80 km to the south. This suggests that the LH has been exhumed jointly with the overlying nappes as a result of overthrusting by about 5 mm/yr. For a convergence rate of about 20 mm/yr, this implies underthrusting of the Indian basement below the Himalaya by about 15 mm/yr. The structure, metamorphic grade and exhumation history of the LH supports the view that, since the mid-Miocene, the Himalayan orogen has essentially grown by underplating, rather than by frontal accretion. This process has resulted from duplexing at a depth close to the brittle-ductile transition zone, by southward migration of a midcrustal ramp along the Main Himalayan Thrust fault, and is estimated to have resulted in a net flux of up to 150 m^2/yr of LH rocks into the Himalayan orogenic wedge. The steep inverse thermal gradient across the LH is interpreted to have resulted from a combination of underplating and post metamorphic shearing of the underplated units

    Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance

    Get PDF
    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance

    Establishing the liquid phase equilibrium of angrites to constrain their petrogenesis

    Get PDF
    Angrites are a series of differentiat-ed meteorites, extremely silica undersaturated and with unusally high Ca and Al contents [1]. They are thought to originate from a small planetesimal parent body of ~ 100-200 km in radius ([2-3]), can be either plutonic (i.e., cumulates) or volcanic (often referred to as quenched) in origin, and their old formation ages (4 to 11 Myr after CAIs) have made them prime anchors to tie the relative chronologies inferred from short-lived radionuclides (e.g., Al-Mg, Mn-Cr, Hf-W) to the absolute Pb-Pb clock [4]. They are also the most vola-tile element-depleted meteorites available, displaying a K-depletion of a factor of 110 relative to CIs

    Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions

    Full text link
    We consider invariant Riemannian metrics on compact homogeneous spaces G/H where an intermediate subgroup K between G and H exists, so that the homogeneous space G/H is the total space of a Riemannian submersion. We study the question as to whether enlarging the fibers of the submersion by a constant scaling factor retains the nonnegative curvature in the case that the deformation starts at a normal homogeneous metric. We classify triples of groups (H,K,G) where nonnegative curvature is maintained for small deformations, using a criterion proved by Schwachh\"ofer and Tapp. We obtain a complete classification in case the subgroup H has full rank and an almost complete classification in the case of regular subgroups.Comment: 23 pages; minor revisions, to appear in Geometriae Dedicat

    Total hip replacement for the treatment of end stage arthritis of the hip : a systematic review and meta-analysis

    Get PDF
    Background: Evolvements in the design, fixation methods, size, and bearing surface of implants for total hip replacement (THR) have led to a variety of options for healthcare professionals to consider. The need to determine the most optimal combinations of THR implant is warranted. This systematic review evaluated the clinical effectiveness of different types of THR used for the treatment of end stage arthritis of the hip. Methods: A comprehensive literature search was undertaken in major health databases. Randomised controlled trials (RCTs) and systematic reviews published from 2008 onwards comparing different types of primary THR in patients with end stage arthritis of the hip were included. Results: Fourteen RCTs and five systematic reviews were included. Patients experienced significant post-THR improvements in Harris Hip scores, but this did not differ between impact types. There was a reduced risk of implant dislocation after receiving a larger femoral head size (36 mm vs. 28 mm; RR = 0.17, 95% CI: 0.04, 0.78) or cemented cup (vs. cementless cup; pooled odds ratio: 0.34, 95% CI: 0.13, 0.89). Recipients of cross-linked vs. conventional polyethylene cup liners experienced reduced femoral head penetration and revision. There was no impact of femoral stem fixation and cup shell design on implant survival rates. Evidence on mortality and complications (aseptic loosening, femoral fracture) was inconclusive. Conclusions: The majority of evidence was inconclusive due to poor reporting, missing data, or uncertainty in treatment estimates. The findings warrant cautious interpretation given the risk of bias (blinding, attrition), methodological limitations (small sample size, low event counts, short follow-up), and poor reporting. Long-term pragmatic RCTs are needed to allow for more definitive conclusions. Authors are encouraged to specify the minimal clinically important difference and power calculation for their primary outcome(s) as well CONSORT, PRISMA and STROBE guidelines to ensure better reporting and more reliable production and assessment of evidence

    Phase correlation of laser waves with arbitrary frequency spacing

    Full text link
    The theoretically predicted correlation of laser phase fluctuations in Lambda-type interaction schemes is experimentally demonstrated. We show, that the mechanism of correlation in a Lambda scheme is restricted to high frequency noise components, whereas in a double-Λ\Lambda scheme, due to the laser phase locking in closed-loop interaction, it extends to all noise frequencies. In this case the correlation is weakly sensitive to coherence losses. Thus the double-Lambda scheme can be used to correlate e.m. fields with carrier frequency differences beyond the GHz regime.Comment: 4 pages, 4 figure

    Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots

    Get PDF
    We study low-temperature transport through carbon nanotube quantum dots in the Coulomb blockade regime coupled to niobium-based superconducting leads. We observe pronounced conductance peaks at finite source-drain bias, which we ascribe to elastic and inelastic cotunneling processes enhanced by the coherence peaks in the density of states of the superconducting leads. The inelastic cotunneling lines display a marked dependence on the applied gate voltage which we relate to different tunneling-renormalizations of the two subbands in the nanotube. Finally, we discuss the origin of an especially pronounced sub-gap structure observed in every fourth Coulomb diamond
    corecore