26 research outputs found
Surface recordings of evoked field potentials from the cerebellum with a flexmea microelectrode array
The cerebellum is an integral part of multijoint control. There are two input pathways to the cerebellar cortex, the mossy fiber and the climbing fiber pathways. The mossy fiber pathway forms a disynaptic input to Purkinje cells through the granular cells. This disynaptic input produces a multicomponent field potential composed of the P1, N 1, N2, N3, N4, and P3 waves. The climbing fiber input forms a monosynaptic input to the Purkinje cells and thus creates a much simpler field potential.
The mossy and climbing fiber field potentials were recorded with a FlexMEA microelectrode array from the pial surface of the paramedian lobule. The peripheral stimulation showed that the mossy and climbing fiber field potentials evoked through intramuscular stimulation were consistent with those of the literature. These results verified the experimental setup to be used in the central stimulation.
The central stimulation produced only the mossy fiber field potential. The amplitude of the field potentials were mapped out to the location on the electrode array producing unique maps for each stimulation site. ANOVA analysis showed that distinct regions can be associated with a certain region of stimulation.
These results show that the FlexMEA is able to record the field potentials from the pial surface of the cerebellar cortex. The 300 um pitch of the electrodes in the array produces distinct patterns with clear regions of activity for different sites of stimulation. In conclusion the FlexMEA can be used to record from cerebellum in behaving animals
High frequency field potentials of the cerebellar cortex
The cerebellum plays a crucial role in motor coordination along with basal ganglia and the motor areas of the cerebral cortex. Both somatosensory and the cerebro-cerebral pathways bring in massive amounts of neural information to the cerebellum. The output of the cerebellar cortex projects to various motor cortices as well as down to the spinal cord to make its contributions to the motor function.
The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150-350Hz) in the cerebellar cortex in a behavioral context. To this end, the paramedian lobule in rats was recorded using micro electro-corticogram (µ-ECoG) electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex
Search for Nanosecond Optical Pulses from Nearby Solar‐Type Stars
With "Earth 2000" technology we could generate a directed laser pulse that outshines the broadband visible light of the Sun by 4 orders of magnitude. This is a conservative lower bound for the technical capability of a communicating civilization; optical interstellar communication is thus technically plausible. We have built a pair of systems to detect nanosecond pulsed optical signals from a target list that includes some 13,000 Sun-like stars, and we have made some 16,000 observations totaling nearly 2400 hr during five years of operation. A beam splitter-fed pair of hybrid avalanche photodetectors at the 1.5 m Wyeth Telescope at the Harvard/Smithsonian Oak Ridge Observatory (Agassiz Station) triggers on a coincident pulse pair, initiating measurement of pulse width and intensity at subnanosecond resolution. An identical system at the 0.9 m Cassegrain at Princeton's Fitz-Randolph Observatory performs synchronized observations with 0.1 μs event timing, permitting unambiguous identification of even a solitary pulse. Among the 11,600 artifact-free observations at Harvard, the distribution of 274 observed events shows no pattern of repetition, and is consistent with a model with uniform event rate, independent of target. With one possible exception (HIP 107395), no valid event has been seen simultaneously at the two observatories. We describe the search and candidate events and set limits on the prevalence of civilizations transmitting intense optical pulses
The Clustering of Luminous Red Galaxies in the Sloan Digital Sky Survey Imaging Data
We present the 3D real space clustering power spectrum of a sample of
\~600,000 luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey
(SDSS), using photometric redshifts. This sample of galaxies ranges from
redshift z=0.2 to 0.6 over 3,528 deg^2 of the sky, probing a volume of 1.5
(Gpc/h)^3, making it the largest volume ever used for galaxy clustering
measurements. We measure the angular clustering power spectrum in eight
redshift slices and combine these into a high precision 3D real space power
spectrum from k=0.005 (h/Mpc) to k=1 (h/Mpc). We detect power on gigaparsec
scales, beyond the turnover in the matter power spectrum, on scales
significantly larger than those accessible to current spectroscopic redshift
surveys. We also find evidence for baryonic oscillations, both in the power
spectrum, as well as in fits to the baryon density, at a 2.5 sigma confidence
level. The statistical power of these data to constrain cosmology is ~1.7 times
better than previous clustering analyses. Varying the matter density and baryon
fraction, we find \Omega_M = 0.30 \pm 0.03, and \Omega_b/\Omega_M = 0.18 \pm
0.04, The detection of baryonic oscillations also allows us to measure the
comoving distance to z=0.5; we find a best fit distance of 1.73 \pm 0.12 Gpc,
corresponding to a 6.5% error on the distance. These results demonstrate the
ability to make precise clustering measurements with photometric surveys
(abridged).Comment: 23 pages, 27 figures, submitted to MNRA
Membership Privacy for Fully Dynamic Group Signatures
Group signatures present a compromise between the traditional goals of digital
signatures and the need for signer privacy, allowing for the creation of
unforgeable signatures in the name of a group which reveal nothing about the
actual signer's identity beyond their group membership. An important
consideration that is absent in prevalent models is that group membership itself
may be sensitive information, especially if group membership is dynamic, i.e.
membership status may change over time.
We address this issue by introducing formal notions of membership privacy for
fully dynamic group signature schemes, which can be easily integrated into the
most expressive models of group signature security to date. We then propose a
generic construction for a fully dynamic group signature scheme with membership
privacy that is based on signatures with flexible public key (SFPK) and
signatures on equivalence classes (SPSEQ).
Finally, we devise novel techniques for SFPK to construct a highly efficient
standard model scheme (i.e. without random oracles) that provides shorter
signatures than even the non-private state-of-the-art from standard assumptions.
This shows that, although the strictly stronger security notions we introduce
have been completely unexplored in the study of fully dynamic group signatures
so far, they do not come at an additional cost in practice
Comparative (Meta)genomic Analysis and Ecological Profiling of Human Gut-Specific Bacteriophage φB124-14
Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape within the human gut microbiome
High Frequency Synchrony in the Cerebellar Cortex during Goal Directed Movements
The cerebellum is involved in sensory-motor integration and cognitive functions. The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150-350Hz) in the cerebellar cortex in a behavioral context. To this end, we recorded from the paramedian lobule in rats using micro electro-corticogram (µ-ECoG) electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. The size and location of these patches on the cortical surface are in agreement with the sensory evoked granular layer patches originally reported by Welker’s lab (Shambes, 1978). Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex