76 research outputs found

    The Shane Wirtanen counts: Observability of the galaxy correlation function

    Get PDF
    For an explicit test of the ability to recover the galaxy two-point correlation function from the Lick catalog of Shane and Wirtanen, we have applied the reduction and analysis methods of Seidner et al. and Groth and Peebles to model galaxy distributions that have known plate and field "errors" and that are high-fidelity simulations of the Lick sample. The model galaxy space distribution is constructed with the Soneira-Peebles prescription, which generates model distributions which have two-, three-, and four-point correlation functions in good agreement with the observed correlation functions. The space distribution is projected onto the sky with and without plate "errors." The Seidner et al. analysis recovers the plate factors in the former case with an error of 6.3%, as originally estimated. The two-point correlation function estimated from the "corrected" model catalog reproduces the built-in correlation function including the break from the power law. This is also true if the angular scale of the break is increased or decreased by a factor of 1.76 from the observed value. We also compare a map of the corrected counts with a map of the counts projected without plate errors and find that the corrected map is a good visual representation of the galaxy distribution. Finally, we construct a simulation which includes systematic variations in plate sensitivity with observer and time-so called "plate shape gradients." Once again, the correlation function of the model catalog reproduces the built in correlation function

    Detection of Cosmic Shear with the HST Survey Strip

    Full text link
    Weak lensing by large-scale structure provides a unique method to directly measure matter fluctuations in the universe, and has recently been detected from the ground. Here, we report the first detection of this `cosmic shear' based on space-based images. The detection was derived from the Hubble Space Telescope (HST) Survey Strip (or Groth Strip), a 4' by 42' set of 28 contiguous WFPC2 pointings with I<27. The small size of the HST Point-Spread Function (PSF) affords both a lower statistical noise, and a much weaker sensitivity to systematic effects, a crucial limiting factor of cosmic shear measurements. Our method and treatment of systematic effects were discussed in an earlier paper (Rhodes, Refregier & Groth 2000). We measure an rms shear of 1.8% on the WFPC2 chip scale (1.27'), in agreement with the predictions of cluster-normalized CDM models. Using a Maximum Likelihood (ML) analysis, we show that our detection is significant at the 99.5% confidence level (CL), and measure the normalization of the matter power spectrum to be sigma8*Omega_m^(0.48) = 0.51 (+0.14,-0.17), in a LambdaCDM universe. These 68% CL errors include (Gaussian) cosmic variance, systematic effects and the uncertainty in the redshift distribution of the background galaxies. Our result is consistent with earlier lensing measurements from the ground, and with the normalization derived from cluster abundance. We discuss how our measurement can be improved with the analysis of a large number of independent WFPC2 fields.Comment: 4 pages, 2 figure

    Hubble Space Telescope Planetary Camera Images of NGC 1316

    Full text link
    We present HST Planetary Camera V and I~band images of the central region of the peculiar giant elliptical galaxy NGC 1316. The inner profile is well fit by a nonisothermal core model with a core radius of 0.41" +/- 0.02" (34 pc). At an assumed distance of 16.9 Mpc, the deprojected luminosity density reaches \sim 2.0 \times 10^3 L_{\sun} pc−3^{-3}. Outside the inner two or three arcseconds, a constant mass-to-light ratio of ∌2.2±0.2\sim 2.2 \pm 0.2 is found to fit the observed line width measurements. The line width measurements of the center indicate the existence of either a central dark object of mass 2 \times 10^9 M_{\sun}, an increase in the stellar mass-to-light ratio by at least a factor of two for the inner few arcseconds, or perhaps increasing radial orbit anisotropy towards the center. The mass-to-light ratio run in the center of NGC 1316 resembles that of many other giant ellipticals, some of which are known from other evidence to harbor central massive dark objects (MDO's). We also examine twenty globular clusters associated with NGC 1316 and report their brightnesses, colors, and limits on tidal radii. The brightest cluster has a luminosity of 9.9 \times 10^6 L_{\sun} (MV=−12.7M_V = -12.7), and the faintest detectable cluster has a luminosity of 2.4 \times 10^5 L_{\sun} (MV=−8.6M_V = -8.6). The globular clusters are just barely resolved, but their core radii are too small to be measured. The tidal radii in this region appear to be ≀\le 35 pc. Although this galaxy seems to have undergone a substantial merger in the recent past, young globular clusters are not detected.Comment: 21 pages, latex, postscript figures available at ftp://delphi.umd.edu/pub/outgoing/eshaya/fornax

    Cosmic Shear and Power Spectrum Normalization with the Hubble Space Telescope

    Full text link
    Weak lensing by large-scale structure provides a direct measurement of matter fluctuations in the universe. We report a measurement of this `cosmic shear' based on 271 WFPC2 archival images from the Hubble Space Telescope Medium Deep Survey (MDS). Our measurement method and treatment of systematic effects were discussed in an earlier paper. We measure the shear variance on scales ranging from 0.7' to 1.4', with a detection significance greater than 3.8. This allows us to measure the normalization of the matter power spectrum to be sigma8 = (0.94 +/- 0.10 +/- 0.14) (0.3/Omega_m)^0.44 (0.21/Gamma)^0.15, in a LCDM universe. The first 1sigma error includes statistical errors only, while the latter also includes (gaussian) cosmic variance and the uncertainty in the galaxy redshift distribution. Our results are consistent with earlier cosmic shear measurements from the ground and from space. We compare our cosmic shear results and those from other groups to the normalization from cluster abundance and galaxy surveys. We find that the combination of four recent cosmic shear measurements are somewhat inconsistent with the recent normalization using these methods, and discuss possible explanations for the discrepancy.Comment: 4 pages, including 3 figures. Uses emulateapj. To appear in ApJL. Minor revisions to match the accepted versio

    Measurement of Cosmic Shear with the Space Telescope Imaging Spectrograph

    Get PDF
    Weak lensing by large-scale structure allows a direct measure of the dark matter distribution. We have used parallel images taken with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope to measure weak lensing, or cosmic shear. We measure the shapes of 26036 galaxies in 1292 STIS fields and measure the shear variance at a scale of 0.51 arcminutes. The charge transfer efficiency (CTE) of STIS has degraded over time and introduces a spurious ellipticity into galaxy shapes during the readout process. We correct for this effect as a function of signal to noise and CCD position. We further show that the detected cosmic shear signal is nearly constant in time over the approximately four years of observation. We detect cosmic shear at the 5.1 sigma level, and our measurement of the shear variance is consistent with theoretical predictions in a LambdaCDM universe. This provides a measure of the normalization of the mass power spectrum sigma_8=(1.02 +- 0.16) (0.3/Omega_m)^{0.46} (0.21/Gamma)^{0.18}$. The one-sigma error includes noise, cosmic variance, systematics and the redshift uncertainty of the source galaxies. This is consistent with previous cosmic shear measurements, but tends to favor those with a high value of sigma_8. It is also consistent with the recent determination of sigma_8 from the Wilkinson Microwave Anisotropy Probe (WMAP) experiment.Comment: 9 pages, 5 figure, 1 table, Accepted to Ap

    Cosmic Shear and Power Spectrum Normalization with the Hubble Space Telescope

    Get PDF
    Weak lensing by large-scale structure provides a direct measurement of matter fluctuations in the universe. We report a measurement of this "cosmic shear" based on 271 Wide Field Planetary Camera 2 archival images from the Hubble Space Telescope Medium Deep Survey. Our measurement method and treatment of systematic effects were discussed in an earlier paper. We measure the shear variance on scales ranging from 07 to 14, with a detection significance greater than 3.8 σ. This allows us to measure the normalization of the matter power spectrum to be σ8 = (0.94 ± 0.10 ± 0.14)(0.3/Ωm)0.44(0.21/Γ)0.15, in a ΛCDM universe. The first 1 σ error includes statistical errors only, while the latter also includes (Gaussian) cosmic variance and the uncertainty in the galaxy redshift distribution. Our results are consistent with earlier cosmic shear measurements from the ground and from space. We compare our cosmic shear results and those from other groups to the normalization from cluster abundance and galaxy surveys. We find that the combination of four recent cosmic shear measurements are somewhat inconsistent with the recent normalization using these methods and discuss possible explanations for the discrepancy

    The Luminosity Function and Mass Function in the Galactic Bulge

    Get PDF
    We present deep photometry obtained with the Hubble Space Telescope (HST) in a field in Baade's Window in the Galactic bulge. We derive a luminosity function down to I ~ 24.3, or V ~ 27.5, corresponding to M ~ 0.3 Msun. The luminosity function from the turnoff down to this level appears remarkably similar to that observed in the solar neighborhood. We derive a mass function using both an empirical local mass-luminosity relation and a mass-luminosity relation from recent stellar model calculations, allowing for the presence of binaries and photometric errors. The mass function has a power law form with dN/dM proportional to M^{-2.2} for M >~ 0.7 Msun. However, we find strong evidence for a break in the mass function slope around 0.5-0.7 Msun, with a significantly shallower slope at lower masses. The value of the slope for the low masses depends on the assumed binary fraction and the accuracy of our completeness correction. This mass function should directly reflect the initial mass function.Comment: 26 pages, 9 figures, to be published in the Astronomical Journa

    Planetary camera observations of the central parsec of M32

    Get PDF
    Analysis of V band HST Planetary Camera images of the elliptical galaxy M32 shows that its nucleus is extremely dense and remains unresolved at even the HST diffraction limit. A combined approach of image deconvolution and model fitting is used to investigate the starlight distribution into limiting radii of 0".04 (0.14 pc at 700 kpc). The logarithmic slope of the brightness profile smoothly flattens from y= -1.2 at 3.4 pc to y= -0.5 at 0.34 pc; interior to this radius the profile is equally consistent with a singular ”(r)∝ r,^(-1/2) cusp or a small nonisothermal core with r_c<0.37 pc. The isophotes maintain constant ellipticity into tlle center, and there is no evidence for a central point source, disk, dust, or any other substructures. The cusp model implies central mass densities p_0 > 3 X 10^7 M_☉ pc^(-3) at the resolution limit and is consistent with a central M_‱ = 3 X 10^6 M_☉ black hole; the core model implies p_0≈4 X 10^6 M_☉ pc^(-3). From the viewpoint of long-term stability, we argue that a starlight cusp surrounding a central black hole is the more plausible interpretation of the observations. A core at the implied density and size without a black hole has a relaxation time of only ~7 X 10^7 yr and a short stellar oollision timescale implying wholesale stellar merging over the age of the universe. The core would be strongly vulnerable to collapse and concomitant runaway stellar merging. Collapse may lead to formation of a massive black hole in any case if it cannot be reversed by formation of a binary from high-mass merger products. Regardless of the ultimate fate of the core, however, structural evolution of the core will always be accompanied by strong evolution of the core population-the constant isophote shape and absence of a central color gradient appear to show that such evolution has not occurred. In contrast, the high velocities around a black hole imply long relaxation and stellar collision times for the cusp population compared to the age of the universe

    Hubble Space Telescope imaging of η Carinae

    Get PDF
    We present new high spatial resolution observations of the material around η Carinae obtained with the Hubble Space Telescope Wide Field/Planetary Camera. The star η Carinae is one of the most massive and luminous stars in our Galaxy, and has been episodically expelling significant quantities of gas over the last few centuries. The morphology of the bright central nebulosity (the homunculus) indicates that it is a thin shell with very well defined edges, and is clumpy on 0".2 (~10^(16)cm) scales. An extension to the northeast of the star {NN/NS using Walborn's [ApJL, 204, L17 ( 1976)] nomenclature} appears to be a stellar jet and its associated bow shock. The bow shock is notable for an intriguing series of parallel linear features across its face. The S ridge and the W arc appear to be part of a "cap" of emission located to the SW and behind the star. Together, the NE jet and the SW cap suggest that the symmetry axis for the system runs NE-SW rather than SE-NW, as previously supposed. Overall, the data indicate that the material around the star may represent an oblate shell with polar blowouts, rather than a bipolar flow

    Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope

    Get PDF
    This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera (WFPC) of the Hubble Space Telescope (HST). We have resolved the gravitational lens system PG 1115 + 080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H_0=50, q_0=0.5)
    • 

    corecore