3,119 research outputs found

    LHC Dynamic Aperture Including the Beam-Beam Force

    Get PDF
    The LHC dynamic aperture in collision is constrained mainly by the beam-beam encounters, and by the field errors in the low-beta triplet quadrupoles. The nominal field errors were used and have been corrected with a local corrector scheme at each IP. The correction algorithm is explained, and the resulting dynamic aperture is shown. In the calculations, the effect of the crossing angle geometry, the beta-function, the bunch intensity and the pacman bunches on the dynamic aperture are studied. It is, however, also necessary to study how the unavoidable long range beam-beam encounters influence the dynamic aperture

    The upgrade of GEO600

    Get PDF
    The German / British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.Comment: 9 pages, Amaldi 8 conference contributio

    Performance of a 1200m long suspended Fabry-Perot cavity

    Full text link
    Using one arm of the Michelson interferometer and the power recycling mirror of the interferometric gravitational wave detector GEO600, we created a Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment was to gather first experience with the main optics, its suspensions and the corresponding control systems. The residual displacement of a main mirror is about 150 nm rms. By stabilising the length of the 1200 m long cavity to the pre-stabilised laser beam we achieved an error point frequency noise of 0.1 mHz/sqrt(Hz) at 100 Hz Fourier frequency. In addition we demonstrated the reliable performance of all included subsystems by several 10-hour-periods of continuous stable operation. Thus the full frequency stabilisation scheme for GEO600 was successfully tested.Comment: Amaldi 4 (Perth 2001) conference proceedings, 10 pages, 8 figure

    Upper limits on the amplitude of ultra-high-frequency gravitational waves from graviton to photon conversion

    Get PDF
    In this work, we present the first experimental upper limits on the presence of stochastic gravitational waves in a frequency band with frequencies above 1 THz. We exclude gravitational waves in the frequency bands from (2.7 - 14) × 10 14 Hz and (5 - 12) × 10 18 Hz down to a characteristic amplitude of hcmin≈6×10-26 and hcmin≈5×10-28 at 95% confidence level, respectively. To obtain these results, we used data from existing facilities that have been constructed and operated with the aim of detecting weakly interacting slim particles, pointing out that these facilities are also sensitive to gravitational waves by graviton to photon conversion in the presence of a magnetic field. The principle applies to all experiments of this kind, with prospects of constraining (or detecting), for example, gravitational waves from light primordial black-hole evaporation in the early universe

    Upper limits on the amplitude of ultra-high-frequency gravitational waves from graviton to photon conversion

    Get PDF
    In this work, we present the first experimental upper limits on the presence of stochastic gravitational waves in a frequency band with frequencies above 1 THz. We exclude gravitational waves in the frequency bands from (2.7−14)× 10 14 (2.7−14)×1014 Hz and (5−12)× 10 18 (5−12)×1018 Hz down to a characteristic amplitude of h min c ≈6× 10 −26 hcmin≈6×10−26 and h min c ≈5× 10 −28 hcmin≈5×10−28 at 95% confidence level, respectively. To obtain these results, we used data from existing facilities that have been constructed and operated with the aim of detecting weakly interacting slim particles, pointing out that these facilities are also sensitive to gravitational waves by graviton to photon conversion in the presence of a magnetic field. The principle applies to all experiments of this kind, with prospects of constraining (or detecting), for example, gravitational waves from light primordial black-hole evaporation in the early universe

    Thermal noise of folding mirrors

    Get PDF
    Current gravitational wave detectors rely on the use of Michelson interferometers. One crucial limitation of their sensitivity is the thermal noise of their optical components. Thus, for example fluctuational deformations of the mirror surface are probed by a laser beam being reflected from the mirrors at normal incidence. Thermal noise models are well evolved for that case but mainly restricted to single reflections. In this work we present the effect of two consecutive reflections under a non-normal incidence onto mirror thermal noise. This situation is inherent to detectors using a geometrical folding scheme such as GEO\,600. We revise in detail the conventional direct noise analysis scheme to the situation of non-normal incidence allowing for a modified weighting funtion of mirror fluctuations. An application of these results to the GEO\,600 folding mirror for Brownian, thermoelastic and thermorefractive noise yields an increase of displacement noise amplitude by 20\% for most noise processes. The amplitude of thermoelastic substrate noise is increased by a factor 4 due to the modified weighting function. Thus the consideration of the correct weighting scheme can drastically alter the noise predictions and demands special care in any thermal noise design process

    Mode-Cleaning and Injection Optics of the Gravitational-Wave Detector GEO600

    Get PDF
    The British–German interferometric gravitational-wave detector GEO600 uses two high-finesse triangular ring cavities of 8 m optical pathlength each, as an optical mode-cleaning system. The modecleaner system is housed in an ultrahigh-vacuum environment to avoid contamination of the optics and to minimize both the influence of refractive index variations of the air and acoustic coupling to the optics. To isolate the cavities from seismic noise, all optical components are suspended as double pendulums. These pendulums are damped at their resonance frequencies at the upper pendulum stage with magnet-coil actuators. A suspended reaction mass supports three coils matching magnets bonded onto the surface of one mirror of each cavity, allowing length control of the modecleaner cavities to maintain resonance with the laser light. A fully automated control system stabilizes the frequency of the slave laser to that of the master laser, the frequency of the master laser to the length of the first modecleaner and the length of the first to the length of the second modecleaner. The control system uses the Pound–Drever–Hall sideband technique and operates autonomously over long time periods with only infrequent human interaction. The duty cycle of the system was measured to be 99.7% during an 18 day period. The throughput of the whole modecleaner system is about 50%. In this article, we give an overview of the mechanical and optical setup and the achieved performance of the double modecleaner system

    A more robust and flexible lattice for LHC

    Get PDF
    To correct more efficiently the arc dispersion, the exact antisymmetry of the LHC optics is now broken, except in the low-b triplets common to the two rings. A new quadrupole is added between the experimental insertions and the dispersion suppressors and several arc quadrupoles are complemented by a small trim quadrupole. The larger number of parameters gives flexibility to the lattice and allows a partial separation of the optical functions, with a decrease of the total number of quadrupole units. It is possible to change rather freely the phase advances of the arc cells. The nominal tunes are split by 4 units to reduce coupling. The bin boot tuning range in the experimental low-b is significantly increased, allowing e.g. a larger beam separation at injection. The super-periodicity of LHC remains 1. We plan to study whether it can be increased within the LHC hardware constraint

    Sleep apnea related risk of motor vehicle accidents is reduced by continuous positive airway pressure: Swedish traffic accident registry data

    Get PDF
    Obstructive sleep apnea (OSA) is associated with an increased risk of motor vehicle accidents (MVAs). The rate of MVAs in patients suspected of having OSA was determined and the effect of continuous positive airway pressure (CPAP) was investigated

    Sleep apnea related risk of motor vehicle accidents is reduced by continuous positive airway pressure: Swedish traffic accident registry data

    Get PDF
    Obstructive sleep apnea (OSA) is associated with an increased risk of motor vehicle accidents (MVAs). The rate of MVAs in patients suspected of having OSA was determined and the effect of continuous positive airway pressure (CPAP) was investigated
    • …
    corecore