59 research outputs found

    Investigating the local structure of B-site cations in (1-x) BaTiO3exBiScO3 and (1-x)PbTiO3exBiScO3 using X-ray absorption spectroscopy

    Get PDF
    NSERCThe structural properties of (1-x)BaTiO3exBiScO3 and (1-x)PbTiO3exBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x 1⁄4 0.2 before im- purity phases begin to form at x 1⁄4 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4ĂŸ. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4ĂŸ with Sc3ĂŸ results in an increase in the off-centre displacement of Ti4ĂŸ cations. Sur- prisingly, BiScO3 substitution has no effect on the displacement of the Ti4ĂŸ cation in the (1-x)PbTiO3 exBiScO3 solid solution

    Investigation of CeTi2O6- and CaZrTi2O7-containing glass–ceramic composite materials

    Get PDF
    NSERCGlass–ceramic composite materials are being investigated for numerous applications (i.e., textile, energy storage, nuclear waste immobilization applications, etc.) due to the chemical durability and flexibility of these materials. Borosilicate and Fe–Al–borosilicate glass–ceramic composites containing brannerite (CeTi2O6) or zirconolite (CaZrTi2O7) crystallites were synthe- sized at different annealing temperatures. The objective of this study was to understand the interaction of brannerite or zirconolite-type crystallites within the glass matrix and to investigate how the local structure of these composite materials changed with changing synthesis conditions. Powder X-ray diffraction (XRD) and Backscattered electron (BSE) microprobe images have been used to study how the ceramic crystallites dispersed in the glass matrix. X-ray absorption near edge spectros- copy (XANES) spectra were also collected from all glass–ceramic composite materials. Examination of Ti K-, Ce L3-, Zr K-, Si L2,3-, Fe K-, and Al L2,3-edge XANES spectra from the glass–ceramic composites have shown that the annealing temperature, glass composition, and the loading of the ceramic crystallites in the glass matrix can affect the local environment of the glass–ceramic composite materials. A comparison of the glass–ceramic composites containing brannerite or zirconolite crystallites has shown that similar changes in the long range and local structure of these composite materials occur when the synthesis conditions to form these materials or the composition are changed

    A Review of X-Ray Absorption Near-Edge Spectroscopic Studies of Pyrochlore-Type Oxides Proposed for Nuclear Materials Applications

    Get PDF
    Pyrochlore-type oxides (A2B2O7) have received considerable attention for nuclear waste sequestration applications. It is important to understand how the electronic structure of these materials changes depending on the composition and how the structure of these materials is affected by radiation. X-ray absorption near-edge spectroscopy (XANES) is a powerful technique that can be used to study the electronic structure of the materials as well as the effect of radiation-induced structural damage on these materials. The objective of this contribution is to demonstrate how XANES can be used to extract important information on pyrochlore-type oxides, including: oxidation state, coordination number (CN), antisite disorder, and the effect of radiation on the structure of the material.NSER

    An investigation of the thermal stability of NdxYyZr1 x yO2 d inert matrix fuel materials

    Get PDF
    NSERCAn important step in achieving a closed uranium fuel cycle is to develop new inert matrix fuel (IMF) materials for use in the burn-up of transuranic species (TRU; i.e., Pu, Np, Am, Cm). Cubic fluorite zirconia (ZrO2) has ideal properties for use in IMF applications, but it is not stable at room temperature and must be stabilized through the addition of small amounts of dopants such as Y. While Y-substituted zirconia (YSZ) has been extensively studied, relatively little work has been done to investigate how the addition of an actinide to the YSZ system affects the properties of these materials. To this end, the long-range and local structures of a series of NdxYyZr1 x yO2 d compounds (Nd was used as a surrogate for Am) were studied using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray absorption spectroscopy (XAS) at the Zr K-, Zr L3-, Y K-, and Nd L3-edges. The thermal stability of Nd–YSZ materials was also investigated by annealing the materials at temperatures ranging between 600 and 1400 °C. These studies showed that the thermal stability of the NdxYyZr1-x-yO2-d system was improved by the addition of small amounts of Y (i.e. 5 at.%) to the system. Additionally, the XAS results showed that the local structure around Zr remained relatively constant; only changes in the second coordination shell were observed when the materials were annealed. These results strongly suggest that the addition of Y can significantly improve the thermal stability of zirconia-based IMFs. This study has also confirmed the importance and value of using advanced characterization techniques that are sensitive to the local struc- tures of a material (i.e., XAS)

    Investigation of the Thermal Stability of NdxScyZr1−x−yO2−ή Materials Proposed for Inert Matrix Fuel Applications

    Get PDF
    NSERCInert matrix fuels (IMF) consist of transuranic elements (i.e., Pu, Am, Np, Cm) embedded in a neutron transparent (inert) matrix and can be used to “burn up” (transmute) these elements in current or Generation IV nuclear reactors. Yttria-stabilized zirconia has been extensively studied for IMF applications, but the low thermal conductivity of this material limits its usefulness. Other elements can be used to stabilize the cubic zirconia structure, and the thermal conductivity of the fuel can be increased through the use of a lighter stabilizing element. To this end, a series of NdxScyZr1−x−yO2−ή materials has been synthesized via a co-precipitation reaction and characterized by multiple techniques (Nd was used as a surrogate for Am). The long-range and local structures of these materials were studied using powder X-ray diffraction, scanning electron microscopy, and X-ray absorption spectroscopy. Additionally, the stability of these materials over a range of temperatures has been studied by annealing the materials at 1100 and 1400 °C. It was shown that the NdxScyZr1−x−yO2−ή materials maintained a single cubic phase upon annealing at high temperatures only when both Nd and Sc were present with y ≄ 0.10 and x + y > 0.15

    XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4

    Get PDF
    NSERCX-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candi- date techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2 SiO4 , MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2 SiO4 , MnSiO3 and MnAl2 O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques

    Identifying calcium-containing mineral species in the JEB Tailings Management Facility at McClean Lake, Saskatchewan

    Get PDF
    NSERCThe JEB Tailings Management Facility (TMF) is central to reducing the environmental impact of the McClean Lake uranium mill facility that is operated by AREVA Resources Canada. This facility has been designed around the idea that elements of concern (e.g., U, As, Ni, Se, Mo) will be controlled through equilibrium with precipitants. Confirming the presence of calcium-containing carbonates in the JEB TMF is the first step in determining if gypsum (CaSO4$2H2O) controls the concentration of HCO 3 (aq), limiting the formation of soluble uranyl bicarbonate complexes. A combination of X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), and microprobe X-ray fluorescence (XRF) mapping was used to analyze a series of tailings samples from the JEB TMF. Calcium carbonate in the form of calcite (CaCO3), aragonite (CaCO3), and dolomite (CaMg(CO3)2) were identified by analysing Ca K-edge m-XANES spectra coupled with microprobe XRF mapping. This is the first observation of these phases in the JEB TMF. The combination of m-XANES and XRF mapping provided a greater sensitivity to low concentration calcium species compared to the other techniques used, which were only sensitive to the major species present (e.g., gypsum)

    Biochemical enrichment and biophysical characterization of a taste receptor for L-arginine from the catfish, Ictalurus puntatus

    Get PDF
    BACKGROUND: The channel catfish, Ictalurus punctatus, is invested with a high density of cutaneous taste receptors, particularly on the barbel appendages. Many of these receptors are sensitive to selected amino acids, one of these being a receptor for L-arginine (L-Arg). Previous neurophysiological and biophysical studies suggested that this taste receptor is coupled directly to a cation channel and behaves as a ligand-gated ion channel receptor (LGICR). Earlier studies demonstrated that two lectins, Ricinus communis agglutinin I (RCA-I) and Phaseolus vulgaris Erythroagglutinin (PHA-E), inhibited the binding of L-Arg to its presumed receptor sites, and that PHA-E inhibited the L-Arg-stimulated ion conductance of barbel membranes reconstituted into lipid bilayers. RESULTS: Both PHA-E and RCA-I almost exclusively labeled an 82–84 kDa protein band of an SDS-PAGE of solubilized barbel taste epithelial membranes. Further, both rhodamine-conjugated RCA-I and polyclonal antibodies raised to the 82–84 kDa electroeluted peptides labeled the apical region of catfish taste buds. Because of the specificity shown by RCA-I, lectin affinity was chosen as the first of a three-step procedure designed to enrich the presumed LGICR for L-Arg. Purified and CHAPS-solubilized taste epithelial membrane proteins were subjected successively to (1), lectin (RCA-I) affinity; (2), gel filtration (Sephacryl S-300HR); and (3), ion exchange chromatography. All fractions from each chromatography step were evaluated for L-Arg-induced ion channel activity by reconstituting each fraction into a lipid bilayer. Active fractions demonstrated L-Arg-induced channel activity that was inhibited by D-arginine (D-Arg) with kinetics nearly identical to those reported earlier for L-Arg-stimulated ion channels of native barbel membranes reconstituted into lipid bilayers. After the final enrichment step, SDS-PAGE of the active ion channel protein fraction revealed a single band at 82–84 kDa which may be interpreted as a component of a multimeric receptor/channel complex. CONCLUSIONS: The data are consistent with the supposition that the L-Arg receptor is a LGICR. This taste receptor remains active during biochemical enrichment procedures. This is the first report of enrichment of an active LGICR from the taste system of vertebrata

    Past changes in the North Atlantic storm track driven by insolation and sea-ice forcing

    Get PDF
    Changes in the location of Northern Hemisphere storm tracks may cause significant societal and economic impacts under future climate change, but projections of future changes are highly uncertain and drivers of long-term changes are poorly understood. Here we develop a late Holocene storminess reconstruction from northwest Spain and combine this with an equivalent record from the Outer Hebrides, Scotland, to measure changes in the dominant latitudinal position of the storm track. The north-south index shows that storm tracks moved from a southern position to higher latitudes over the past 4000 yr, likely driven by a change from meridional to zonal atmospheric circulation, associated with a negative to positive North Atlantic Oscillation shift. We suggest that gradual polar cooling (caused by decreasing solar insolation in summer and amplified by sea-ice feedbacks) and mid-latitude warming (caused by increasing winter insolation) drove a steepening of the winter latitudinal temperature gradient through the late Holocene, resulting in the observed change to a more northern winter storm track. Our findings provide paleoclimate support for observational and modeling studies that link changes in the latitudinal temperature gradient and sea-ice extent to the strength and shape of the circumpolar vortex. Together this evidence now suggests that North Atlantic winter storm tracks may shift southward under future warming as sea-ice extent decreases and the mid- to high-latitude temperature gradient decreases, with storms increasingly affecting southern Europe
    • 

    corecore