15 research outputs found

    Concerning the Interests of Insects

    Get PDF

    The Delta as Changing Landscapes

    Get PDF
    doi: http://dx.doi.org/10.15447/sfews.2016v14iss2art9What happens at one place in a landscape influences and is influenced by what happens in other places. Consequently, management and restoration that focus on individual places may fail to recognize and incorporate interactions across entire landscapes. The science of landscape ecology, which emphasizes the interplay of landscape structure, function, and change at multiple scales, offers a perspective that can integrate the spatial relationships of ecological processes and the functional interconnections of land and water in the Delta. Although the Delta is one of the most studied estuaries in the world, applications of landscape science have been limited. We describe why it is important to incorporate landscape science into management and restoration, emphasizing how Delta landscapes have changed over the past centuries. The land–water linkages of the past have been broken, waterways have been over-connected, and hard boundaries have replaced the gradual and dynamic transitions among landscape patches. The contemporary landscape also has new, novel assemblages of species and stressors that were not there in the past. This historical perspective indicates how knowledge of past landscape functions can contribute to the restoration and management of contemporary landscapes. We illustrate these points with case studies of inundation dynamics and riparian woodlands, and use a third example to describe a landscape approach to restoration. We propose that science that encompasses the multiple, interacting components of functional landscapes in the Delta will foster resilient and enduring restoration and management outcomes that benefit both people and wildlife. We suggest several ways of moving landscape science to the forefront of management and restoration in the Delta.</p

    Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities

    No full text
    In response to the widely recognized negative impacts of urbanization on biodiversity, many cities are reimagining urban design to provide better biodiversity support. Some cities have developed urban biodiversity plans, primarily focused on improving biodiversity support and ecosystem function within the built environment through habitat restoration and other types of urban greening projects. The biophilic cities movement seeks to reframe nature as essential infrastructure for cities, seamlessly integrating city and nature to provide abundant, accessible nature for all residents and corresponding health and well-being outcomes. Urban biodiversity planning and biophilic cities have significant synergies in their goals and the means necessary to achieve them. In this paper, we identify three key ways by which the urban biodiversity planning process can support biophilic cities objectives: engaging the local community; identifying science-based, quantitative goals; and setting priorities for action. Urban biodiversity planning provides evidence-based guidance, tools, and techniques needed to design locally appropriate, pragmatic habitat enhancements that support biodiversity, ecological health, and human health and well-being. Developing these multi-functional, multi-benefit strategies that increase the abundance of biodiverse nature in cities has the potential at the same time to deepen and enrich our biophilic experience in daily life

    The Role of Tidal Marsh Restoration in Fish Management in the San Francisco Estuary

    No full text
    Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary). Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011). Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha) and the Bay Delta Conservation Plan (26,305 ha). In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012). In the Sacramento–San Joaquin Delta (Delta), one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013). The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010). This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium.

    Denser and greener cities: Green interventions to achieve both urban density and nature

    No full text
    Abstract Green spaces in urban areas—like remnant habitat, parks, constructed wetlands, and street trees—supply multiple benefits. Many studies show green spaces in and near urban areas play important roles harbouring biodiversity and promoting human well‐being. On the other hand, evidence suggests that greater human population density enables compact, low‐carbon cities that spare habitat conversion at the fringes of expanding urban areas, while also allowing more walkable and livable cities. How then can urban areas have abundant green spaces as well as density? In this paper, we review the empirical evidence for the relationships between urban density, nature, and sustainability. We also present a quantitative analysis of data on urban tree canopy cover and open space for United States large urbanized areas, as well as an analysis of non‐US Functional Urban Areas in OECD countries. We found that there is a negative correlation between population density and these green spaces. For Functional Urban Areas in the OECD, a 10% increase in density is associated with a 2.9% decline in tree cover. We argue that there are competing trade‐offs between the benefits of density for sustainability and the benefits of nature for human well‐being. Planners must decide an appropriate density by choosing where to be on this trade‐off curve, taking into account city‐specific urban planning goals and context. However, while the negative correlation between population density and tree cover is modest at the level of US urbanized areas (R2 = 0.22), it is weak at the US Census block level (R2 = 0.05), showing that there are significant brightspots, neighbourhoods that manage to have more tree canopy than would be expected based upon their level of density. We then describe techniques for how urban planners and designers can create more brightspots, identifying a typology of urban forms and listing green interventions appropriate for each form. We also analyse policies that enable these green interventions illustrating them with the case studies of Curitiba and Singapore. We conclude that while there are tensions between density and urban green spaces, an urban world that is both green and dense is possible, if society chooses to take advantage of the available green interventions and create it. Read the free Plain Language Summary for this article on the Journal blog

    Primary Production in the Delta: Then and Now

    No full text
    To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850). Here we describe an approach for using these metrics of land use change to: (1) produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2) convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3) use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region
    corecore