16 research outputs found

    Functional Derivative of the Zero Point Energy Functional from the Strong Interaction Limit of Density Functional Theory

    Get PDF
    We derive an explicit expression for the functional derivative of the subleading term in the strong interaction limit expansion of the generalized Levy--Lieb functional for the special case of two electrons in one dimension. The expression is derived from the zero point energy (ZPE) functional, which is valid if the quantum state reduces to strongly correlated electrons in the strong coupling limit. The explicit expression is confirmed numerically and respects the relevant sum-rule. We also show that the ZPE potential is able to generate a bond mid-point peak for homo-nuclear dissociation and is properly of purely kinetic origin. Unfortunately, the ZPE diverges for Coulomb systems, whereas the exact peaks should be finite.Comment: 12 pages, 7 figure

    Kohn-Sham equations with functionals from the strictly-correlated regime: Investigation with a spectral renormalization method

    Full text link
    We re-adapt a spectral renormalization method, introduced in nonlinear optics, to solve the Kohn-Sham (KS) equations of density functional theory (DFT), with a focus on functionals based on the strictly-correlated electrons (SCE) regime, which are particularly challenging to converge. Important aspects of the method are: (i) the eigenvalues and the density are computed simultaneously; (ii) it converges using randomized initial guesses; (iii) easy to implement. Using this method we could converge for the first time the Kohn-Sham equations with functionals that include the next leading term in the strong-interaction limit of density functional theory, the so-called zero-point energy (ZPE) functional as well as with an interaction-strength-interpolation (ISI) functional that includes both the exact SCE and ZPE terms. This work is the first building block for future studies on quantum systems confined in low dimensions with different statistics and long-range repulsions, such as localization properties of fermions and bosons with strong long-range repulsive interactions in the presence of a random external potential

    Fermionic statistics in the strongly correlated limit of Density Functional Theory

    Full text link
    Exact pieces of information on the adiabatic connection integrand Wλ[ρ]W_{\lambda}[\rho], which allows to evaluate the exchange-correlation energy of Kohn-Sham density functional theory, can be extracted from the leading terms in the strong coupling limit (λ\lambda\to\infty, where λ\lambda is the strength of the electron-electron interaction). In this work, we first compare the theoretical prediction for the two leading terms in the strong coupling limit with data obtained via numerical implementation of the exact Levy functional in the simple case of two electrons confined in one dimension, confirming the asymptotic exactness of these two terms. We then carry out a first study on the incorporation of the fermionic statistics at large coupling λ\lambda, both numerical and theoretical, confirming that spin effects enter at orders eλ\sim e^{-\sqrt{\lambda}}

    Large coupling-strength expansion of the M{\o}ller-Plesset adiabatic connection: From paradigmatic cases to variational expressions for the leading terms

    Get PDF
    We study in detail the first three leading terms of the large coupling-strength limit of the adiabatic connection that has as weak-interaction expansion the M{\o}ller-Plesset perturbation theory. We first focus on the H atom, both in the spin-polarized and the spin-unpolarized case, reporting numerical and analytical results. In particular, we derive an asymptotic equation that turns out to have simple analytical solutions for certain channels. The asymptotic H atom solution for the spin-unpolarized case is then shown to be variationally optimal for the many-electron spin-restricted closed-shell case, providing expressions for the large coupling-strength density functionals up to the third leading order. We also analyze the H2 molecule and the uniform electron gas

    Kinetic Correlation Functionals from the Entropic Regularization of the Strictly Correlated Electrons Problem

    No full text
    In this work, we study the entropic regularization of the strictly correlated electrons formalism, discussing the implications for density functional theory and establishing a link with earlier works on quantum kinetic energy and classical entropy. We carry out a very preliminary investigation (using simplified models) on the use of the solution of the entropic regularized problem to build approximations for the kinetic correlation functional at large coupling strengths. We also analyze lower and upper bounds to the Hohenberg-Kohn functional using the entropic regularized strictly correlated electrons problem

    Kohn-Sham equations with functionals from the strictly-correlated regime:Investigation with a spectral renormalization method

    No full text
    We re-adapt a spectral renormalization method, introduced in nonlinear optics, to solve the Kohn-Sham (KS) equations of density functional theory, with a focus on functionals based on the strictly-correlated electrons (SCE) regime, which are particularly challenging to converge. Important aspects of the method are: (i) the eigenvalues and the density are computed simultaneously; (ii) it converges using randomized initial guesses; (iii) easy to implement. Using this method we could converge for the first time the Kohn-Sham equations with functionals that include the next leading term in the strong-interaction limit of density functional theory, the so called zero-point energy (ZPE) functional as well as with an interaction-strength-interpolation functional that includes both the exact SCE and ZPE terms. This work is the first building block for future studies on quantum systems confined in low dimensions with different statistics and long-range repulsions, such as localization properties of fermions and bosons with strong long-range repulsive interactions in the presence of a random external potential
    corecore