36 research outputs found

    Two Color Entanglement

    Full text link
    We report on the generation of entangled states of light between the wavelengths 810 and 1550 nm in the continuous variable regime. The fields were produced by type I optical parametric oscillation in a standing-wave cavity build around a periodically poled potassium titanyl phosphate crystal, operated above threshold. Balanced homodyne detection was used to detect the non-classical noise properties, while filter cavities provided the local oscillators by separating carrier fields from the entangled sidebands. We were able to obtain an inseparability of I=0.82, corresponding to about -0.86 dB of non-classical quadrature correlation.Comment: 4 pages, 2 figure

    Quantum Cloning of Continuous Variable Entangled States

    Get PDF
    We consider the quantum cloning of continuous variable entangled states. This is achieved by introducing two symmetric entanglement cloning machines (or e-cloners): a local e-cloner and a global e-cloner; where we look at the preservation of entanglement in the clones under the condition that the fidelity of the clones is maximized. These cloning machines are implemented using simple linear optical elements such as beam splitters and homodyne detection along with squeeze gates. We show that the global e-cloner out-performs the local e-cloner both in terms of the fidelity of the cloned states as well as the strength of the entanglement of the clones. There is a minimum strength of entanglement (3dB for the inseparability criterion and 5.7dB for the EPR paradox criterion) of the input state of the global e-cloner that is required to preserve the entanglement in the clones.Comment: 11 pages, 6 figure

    Harmonic entanglement with second-order non-linearity

    Get PDF
    We investigate the second-order non-linear interaction as a means to generate entanglement between fields of differing wavelengths. And show that perfect entanglement can, in principle, be produced between the fundamental and second harmonic fields in these processes. Neither pure second harmonic generation, nor parametric oscillation optimally produce entanglement, such optimal entanglement is rather produced by an intermediate process. An experimental demonstration of these predictions should be imminently feasible.Comment: 4 pages, 4 figure

    Conditional quantum-state engineering using ancillary squeezed-vacuum states

    Full text link
    We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne detection and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian quantum states such as squeezed single photons and superpositions of coherent states (SCSs). We show that a SCS with well defined parity and high fidelity can be generated from a Fock state of n≤4n\leq4, and conjecture that this can be generalized for an arbitrary nn Fock state. We describe our experimental demonstration of this scheme using coherent input states and measuring experimental fidelities that are only achievable using quantum resources.Comment: 10 pages, 14 figures, use pdf version, high quality figures available on reques

    Measuring photon anti-bunching from continuous variable sideband squeezing

    Get PDF
    We present a technique for measuring the second-order coherence function g(2)(τ)g^{(2)}(\tau) of light using a Hanbury-Brown Twiss intensity interferometer modified for homodyne detection. The experiment was performed entirely in the continuous variable regime at the sideband frequency of a bright carrier field. We used the setup to characterize g(2)(τ)g^{(2)}(\tau) for thermal and coherent states, and investigated its immunity to optical loss. We measured g(2)(τ)g^{(2)}(\tau) of a displaced squeezed state, and found a best anti-bunching statistic of g(2)(0)=0.11±0.18g^{(2)}(0) = 0.11 \pm 0.18.Comment: 4 pages, 4 figure

    Quantum State Engineering with Continuous-Variable Post-Selection

    Get PDF
    We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photon and superposition of coherent states, from input single and two photon Fock states respectively. The input Fock state is interacted with an ancilla squeezed vacuum state using a beam-splitter. We transform the quantum system by post-selecting on the continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the principles of this scheme using displaced coherent states and measure experimentally fidelities that are only achievable using quantum resources.Comment: 4 pages, 5 figures, publishe

    Squeezing in the audio gravitational wave detection band

    Get PDF
    We demonstrate the generation of broad-band continuous-wave optical squeezing down to 200Hz using a below threshold optical parametric oscillator (OPO). The squeezed state phase was controlled using a noise locking technique. We show that low frequency noise sources, such as seed noise, pump noise and detuning fluctuations, present in optical parametric amplifiers have negligible effect on squeezing produced by a below threshold OPO. This low frequency squeezing is ideal for improving the sensitivity of audio frequency measuring devices such as gravitational wave detectors.Comment: 5 pages, 6 figure

    Observation of entanglement between two light beams spanning an octave in optical frequency

    Full text link
    We have experimentally demonstrated how two beams of light separated by an octave in frequency can become entangled after their interaction in a second-order nonlinear medium. The entangler consisted of a nonlinear crystal placed within an optical resonator that was strongly driven by coherent light at the fundamental and second-harmonic wavelengths. An inter-conversion between the fields created quantum correlations in the amplitude and phase quadratures, which were measured by two independent homodyne detectors. Analysis of the resulting correlation matrix revealed a wavefunction inseparability of 0.74(1) < 1 thereby satisfying the criterion of entanglement.Comment: 4 pages, 4 figure

    Quantum Noise Locking

    Full text link
    Quantum optical states which have no coherent amplitude, such as squeezed vacuum states, can not rely on standard readout techniques to generate error signals for control of the quadrature phase. Here we investigate the use of asymmetry in the quadrature variances to obtain a phase-sensitive readout and to lock the phase of a squeezed vacuum state, a technique which we call noise locking (NL). We carry out a theoretical derivation of the NL error signal and the associated stability of the squeezed and anti-squeezed lock points. Experimental data for the NL technique both in the presence and absence of coherent fields are shown, including a comparison with coherent locking techniques. Finally, we use NL to enable a stable readout of the squeezed vacuum state on a homodyne detector.Comment: Accepted for publication in Journal of Optics:B special issue on Quantum Contro
    corecore