26,401 research outputs found
"Third places" and social interaction in deprived neighbourhoods in Great Britain
This paper explores social interaction in local âpublicâ social spaces such as local shops, pubs, cafĂ©s, and community centres in deprived neighbourhoods. More specifically, it examines the importance, role and function of these places, which have been described by Oldenberg and Brissett (Qual Sociol 5(4):265â284, 1982), Oldenburg (Urban design reader. Architectural Place, Oxford, 2007) as being âthird placesâ of social interaction after the home (first) and workplace (second). It does so by drawing on data gleaned from in-depth interviews with 180 residents in six deprived areas neighbourhoods across Great Britain, conducted as part of a study of the links between poverty and place funded by the Joseph Rowntree Foundation. The paper notes that local third places are an important medium for social interaction in these areas, although their importance appears to vary by population group. It notes that shops appear to be a particularly important social space. It also identifies some of the barriers to social interaction within third places and concludes by highlighting some of the key implications for policy to emerge from the research
The String Theory Approach to Generalized 2D Yang-Mills Theory
We calculate the partition function of the ( and ) generalized
theory defined on an arbitrary Riemann surface. The result which is
expressed as a sum over irreducible representations generalizes the Rusakov
formula for ordinary YM_2 theory. A diagrammatic expansion of the formula
enables us to derive a Gross-Taylor like stringy description of the model. A
sum of 2D string maps is shown to reproduce the gauge theory results. Maps with
branch points of degree higher than one, as well as ``microscopic surfaces''
play an important role in the sum. We discuss the underlying string theory.Comment: TAUP-2182-94, 53 pages of LaTeX and 5 uuencoded eps figure
Kaon squeeze-out in heavy ion reactions
The squeeze-out phenomenon of and mesons, i.e. the azimuthal
asymmetry of and mesons emitted at midrapidity in heavy ion
reactions, is investigated for beam energies of 1-2 A.GeV. It is found that the
squeeze-out signal is strongly affected by in-medium potentials of these
mesons. The repulsive -nucleus potential gives rise to a pronounced
out-of-plane emission of 's at midrapidity. With the potential we
reproduce well the experimental data of the azimuthal distribution. It is
found that the attractive -nucleus potential cancels to a large extent the
influence of rescattering and reabsorption of the mesons on the
projectile and target residuals (i.e. shadowing). This results in an
azimuthally isotropic emission of the midrapidity mesons with transverse
momentum up to 0.8 GeV/c. Since it is well accepted that the shadowing alone
would lead to a significant out-of-plane preference of particle emission, in
particular at high transverse momenta, the disappearance of the out-of-plane
preference for the mesons can serve as an unambiguous signal of the
attractive potential. We also apply a covariant formalism of the kaon
dynamics to the squeeze-out phenomenon. Discrepancies between the theory and
the experiments and possible solutions are discussed.Comment: 24 pages Latex using Elsevier style, 7 PS figures, accepted for
publication in Euro. Phys. Jour.
Scalable reconstruction of density matrices
Recent contributions in the field of quantum state tomography have shown
that, despite the exponential growth of Hilbert space with the number of
subsystems, tomography of one-dimensional quantum systems may still be
performed efficiently by tailored reconstruction schemes. Here, we discuss a
scalable method to reconstruct mixed states that are well approximated by
matrix product operators. The reconstruction scheme only requires local
information about the state, giving rise to a reconstruction technique that is
scalable in the system size. It is based on a constructive proof that generic
matrix product operators are fully determined by their local reductions. We
discuss applications of this scheme for simulated data and experimental data
obtained in an ion trap experiment.Comment: 9 pages, 5 figures, replaced with published versio
Magneto-optical imaging of voltage-controlled magnetization reorientation
We study the validity and limitations of a macrospin model to describe the
voltage-controlled manipulation of ferromagnetic magnetization in nickel thin
film/piezoelectric actuator hybrid structures. To this end, we correlate
simultaneously measured spatially resolved magneto-optical Kerr effect imaging
and integral magnetotransport measurements at room temperature. Our results
show that a macrospin approach is adequate to model the magnetoresistance as a
function of the voltage applied to the hybrid, except for a narrow region
around the coercive field - where the magnetization reorientation evolves via
domain effects. Thus, on length scales much larger than the typical magnetic
domain size, the voltage control of magnetization is well reproduced by a
simple Stoner-Wohlfarth type macrospin model
RealTimeFrame â A Real Time Processing Framework for Medical Video Sequences
Imaging technology is highly important in todayâs medical environments. It provides information upon which the accuracy of the diagnosis and consequently the wellbeing of the patient rely. Increasing the quality and significance of medical image data is therefore one the aims of scientific research and development. We introduce an integrated hardware and software framework for real time image processing in medical environments, which we call RealTimeFrame. Our project is designed to offer flexibility, easy expandability and high performance. We use standard personal computer hardware to run our multithreaded software. A frame grabber card is used to capture video signals from medical imaging systems. A modular, user-defined process chain performs arbitrary manipulations on the image data. The graphical user interface offers configuration options and displays the processed image in either window or full screen mode. Image source and processing routines are encapsulated in dynamic library modules for easy functionality extension without recompilation of the entire software framework. Documented template modules for sources and processing steps are part of the softwareâs source code
Comparison of Josephson vortex flow transistors with different gate line configurations
We performed numerical simulations and experiments on Josephson vortex flow
transistors based on parallel arrays of YBa2Cu3O(7-x) grain boundary junctions
with a cross gate-line allowing to operate the same devices in two different
modes named Josephson fluxon transistor (JFT) and Josephson fluxon-antifluxon
transistor (JFAT). The simulations yield a general expression for the current
gain vs. number of junctions and normalized loop inductance and predict higher
current gain for the JFAT. The experiments are in good agreement with
simulations and show improved coupling between gate line and junctions for the
JFAT as compared to the JFT.Comment: 3 pages, 6 figures, accept. for publication in Appl. Phys. Let
Time-dependent density functional theory: Past, present, and future
Time-dependent density functional theory (TDDFT) is presently enjoying
enormous popularity in quantum chemistry, as a useful tool for extracting
electronic excited state energies. This article discusses how TDDFT is much
broader in scope, and yields predictions for many more properties. We discuss
some of the challenges involved in making accurate predictions for these
properties.Comment: 12 pages, 4 figure
- âŠ