22,273 research outputs found

    Calculating the Rest Tension for a Polymer of String Bits

    Full text link
    We explore the application of approximation schemes from many body physics, including the Hartree-Fock method and random phase approximation (RPA), to the problem of analyzing the low energy excitations of a polymer chain made up of bosonic string bits. We accordingly obtain an expression for the rest tension T0T_0 of the bosonic relativistic string in terms of the parameters characterizing the microscopic string bit dynamics. We first derive an exact connection between the string tension and a certain correlation function of the many-body string bit system. This connection is made for an arbitrary interaction potential between string bits and relies on an exact dipole sum rule. We then review an earlier calculation by Goldstone of the low energy excitations of a polymer chain using RPA. We assess the accuracy of the RPA by calculating the first order corrections. For this purpose we specialize to the unique scale invariant potential, namely an attractive delta function potential in two (transverse) dimensions. We find that the corrections are large, and discuss a method for summing the large terms. The corrections to this improved RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint, UFIFT-HEP-94

    Non-homogenous disks in the chain of matrices

    Full text link
    We investigate the generating functions of multi-colored discrete disks with non-homogenous boundary conditions in the context of the Hermitian multi-matrix model where the matrices are coupled in an open chain. We show that the study of the spectral curve of the matrix model allows one to solve a set of loop equations to get a recursive formula computing mixed trace correlation functions to leading order in the large matrix limit.Comment: 25 pages, 4 figure

    The Spectrum of the Neumann Matrix with Zero Modes

    Get PDF
    We calculate the spectrum of the matrix M' of Neumann coefficients of the Witten vertex, expressed in the oscillator basis including the zero-mode a_0. We find that in addition to the known continuous spectrum inside [-1/3,0) of the matrix M without the zero-modes, there is also an additional eigenvalue inside (0,1). For every eigenvalue, there is a pair of eigenvectors, a twist-even and a twist-odd. We give analytically these eigenvectors as well as the generating function for their components. Also, we have found an interesting critical parameter b_0 = 8 ln 2 on which the forms of the eigenvectors depend.Comment: 25+1 pages, 3 Figures; typos corrected and some comments adde

    Large two-level magnetoresistance effect in doped manganite grain boundary junctions

    Full text link
    We performed a systematic analysis of the tunneling magnetoresistance (TMR) effect in single grain boundary junctions formed in epitaxial La(2/3)Ca(1/3)MnO(3) films deposited on SrTiO(3) bicrystals. For magnetic fields H applied parallel to the grain boundary barrier, an ideal two-level resistance switching behavior with sharp transitions is observed with a TMR effect of up to 300% at 4.2 K and still above 100% at 77 K. Varying the angle between H and the grain boundary results in differently shaped resistance vs H curves. The observed behavior is explained within a model of magnetic domain pinning at the grain boundary interface.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (Rapid Comm.

    Arrow ribbon graphs

    Full text link
    We introduce an additional structure on ribbon graphs, arrow structure. We extend the Bollob\'as-Riordan polynomial to ribbon graph with this structure. The extended polynomial satisfies the contraction-deletion relations and naturally behaves with respect to the partial duality of ribbon graphs. We construct an arrow ribbon graph from a virtual link whose extended Bollob\'as-Riordan polynomial specializes to the arrow polynomial of the virtual link recently introduced by H.Dye and L.Kauffman. This result generalizes the classical Thistlethwaite theorem to the arrow polynomial of virtual links.Comment: to appear in Journal of Knot Theory and Its Ramification

    Ratio of Tensions from Vacuum String Field Theory

    Full text link
    We show analytically that the ratio of the norm of sliver states agrees with the ratio of D-brane tensions. We find that the correct ratio appears as a twist anomaly.Comment: 13 pages, lanlmac; version to appear in JHE

    Transport anisotropy in biaxially strained La(2/3)Ca(1/3)MnO(3) thin films

    Full text link
    Due to the complex interplay of magnetic, structural, electronic, and orbital degrees of freedom, biaxial strain is known to play an essential role in the doped manganites. For coherently strained La(2/3)Ca(1/3)MnO(3) thin films grown on SrTiO(3) substrates, we measured the magnetotransport properties both parallel and perpendicular to the substrate and found an anomaly of the electrical transport properties. Whereas metallic behavior is found within the plane of biaxial strain, for transport perpendicular to this plane an insulating behavior and non-linear current-voltage characteristics (IVCs) are observed. The most natural explanation of this anisotropy is a strain induced transition from an orbitally disordered ferromagnetic state to an orbitally ordered state associated with antiferromagnetic stacking of ferromagnetic manganese oxide planes.Comment: 5 pages, 4 figure

    Nuclear Corrections to Hyperfine Structure in Light Hydrogenic Atoms

    Full text link
    Hyperfine intervals in light hydrogenic atoms and ions are among the most accurately measured quantities in physics. The theory of QED corrections has recently advanced to the point that uncalculated terms for hydrogenic atoms and ions are probably smaller than 0.1 parts per million (ppm), and the experiments are even more accurate. The difference of the experiments and QED theory is interpreted as the effect on the hyperfine interaction of the (finite) nuclear charge and magnetization distributions, and this difference varies from tens to hundreds of ppm. We have calculated the dominant component of the 1s hyperfine interval for deuterium, tritium and singly ionized helium, using modern second-generation potentials to compute the nuclear component of the hyperfine splitting for the deuteron and the trinucleon systems. The calculated nuclear corrections are within 3% of the experimental values for deuterium and tritium, but are about 20% discrepant for singly ionized helium. The nuclear corrections for the trinucleon systems can be qualitatively understood by invoking SU(4) symmetry.Comment: 26 pages, 1 figure, latex - submitted to Physical Review

    Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films

    Full text link
    The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows to monitor the growth of oxide thin films even at high oxygen pressure. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas for perovskites such as SrTiO3 or doped LaMnO3 a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, a sub-unit cell molecular or block layer growth is established resulting in several RHEED intensity oscillations during the growth of a single unit-cell

    Relativistic calculation of the triton binding energy and its implications

    Get PDF
    First results for the triton binding energy obtained from the relativistic spectator or Gross equation are reported. The Dirac structure of the nucleons is taken into account. Numerical results are presented for a family of realistic OBE models with off-shell scalar couplings. It is shown that these off-shell couplings improve both the fits to the two-body data and the predictions for the binding energy.Comment: 5 pages, RevTeX 3.0, 1 figure (uses epsfig.sty
    • …
    corecore