28,965 research outputs found

    The String Calculation of QCD Wilson Loops on Arbitrary Surfaces

    Full text link
    Compact string expressions are found for non-intersecting Wilson loops in SU(N) Yang-Mills theory on any surface (orientable or nonorientable) as a weighted sum over covers of the surface. All terms from the coupled chiral sectors of the 1/N expansion of the Wilson loop expectation values are included.Comment: 10 pages, LaTeX, no figure

    Two-pion exchange and strong form-factors in covariant field theories

    Get PDF
    In this work improvements to the application of the Gross equation to nuclear systems are tested. In particular we evaluate the two pion exchange diagrams, including the crossed-box diagram, using models developed within the spectator-on-mass-shell covariant formalism. We found that the form factors used in these models induce spurious contributions that violate the unitary cut requirement. We tested then some alternative form-factors in order to preserve the unitarity condition. With this new choice, the difference between the exact and the spectator-on-mass-shell amplitudes is of the order of the one boson scalar exchange, supporting the idea that this difference may be parameterized by this type of terms.Comment: RevTeX, 21 pages, 19 figures (PostScript

    Gauging the three-nucleon spectator equation

    Get PDF
    We derive relativistic three-dimensional integral equations describing the interaction of the three-nucleon system with an external electromagnetic field. Our equations are unitary, gauge invariant, and they conserve charge. This has been achieved by applying the recently introduced gauging of equations method to the three-nucleon spectator equations where spectator nucleons are always on mass shell. As a result, the external photon is attached to all possible places in the strong interaction model, so that current and charge conservation are implemented in the theoretically correct fashion. Explicit expressions are given for the three-nucleon bound state electromagnetic current, as well as the transition currents for the scattering processes \gamma He3 -> NNN, Nd -> \gamma Nd, and \gamma He3 -> Nd. As a result, a unified covariant three-dimensional description of the NNN-\gamma NNN system is achieved.Comment: 23 pages, REVTeX, epsf, 4 Postscript figure

    Variation in the μ-opioid receptor gene (OPRM1) moderates the influence of early maternal care on fearful attachment

    Get PDF
    There is evidence that both early experience and genetic variation play a role in influencing sensitivity to social rejection. In this study, we aimed at ascertaining if the A118G polymorphism of the k-opioid receptor gene (OPRM1) moderates the impact of early maternal care on fearful attachment, a personality trait strongly related to rejection sensitivity. In 112 psychiatric patients, early maternal care and fearful attachment were measured using the Parental Bonding Inventory and the Relationship Questionnaire (RQ), respectively. The pattern emerging from the RQ data was a crossover interaction between genotype and maternal caregiving. Participants expressing the minor 118 G allele had similar and relatively high scores on fearful attachment regardless of the quality of maternal care. By contrast, early experience made a major difference for participants carrying the A/A genotype. Those who recalled higher levels of maternal care reported the lowest levels of fearful attachment whereas those who recalled lower levels of maternal care scored highest on fearful attachment. Our data fit well with the differential susceptibility model which stipulates that plasticity genes would make some individuals more responsive than others to the negative consequences of adversity and to the benefits of environmental support and enrichment

    Relativistic calculation of the triton binding energy and its implications

    Get PDF
    First results for the triton binding energy obtained from the relativistic spectator or Gross equation are reported. The Dirac structure of the nucleons is taken into account. Numerical results are presented for a family of realistic OBE models with off-shell scalar couplings. It is shown that these off-shell couplings improve both the fits to the two-body data and the predictions for the binding energy.Comment: 5 pages, RevTeX 3.0, 1 figure (uses epsfig.sty

    Direct evaluation of the isotope effect within the framework of density functional theory for superconductors

    Get PDF
    Within recent developments of density functional theory, its numerical implementation and of the superconducting density functional theory is nowadays possible to predict the superconducting critical temperature, Tc, with sufficient accuracy to anticipate the experimental verification. In this paper we present an analytical derivation of the isotope coefficient within the superconducting density functional theory. We calculate the partial derivative of Tc with respect to atomic masses. We verified the final expression by means of numerical calculations of isotope coefficient in monatomic superconductors (Pb) as well as polyatomic superconductors (CaC6). The results confirm the validity of the analytical derivation with respect to the finite difference methods, with considerable improvement in terms of computational time and calculation accuracy. Once the critical temperature is calculated (at the reference mass(es)), various isotope exponents can be simply obtained in the same run. In addition, we provide the expression of interesting quantities like partial derivatives of the deformation potential, phonon frequencies and eigenvectors with respect to atomic masses, which can be useful for other derivations and applications

    Covariant equations for the three-body bound state

    Get PDF
    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including the Wigner rotations and rho-spin decomposition of the off-shell particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative rho-spin states of the off-shell particle.Comment: 57 pages, RevTeX, 6 figures, uses epsf.st

    Current-density functional theory of time-dependent linear response in quantal fluids: recent progress

    Full text link
    Vignale and Kohn have recently formulated a local density approximation to the time-dependent linear response of an inhomogeneous electron system in terms of a vector potential for exchange and correlation. The vector potential depends on the induced current density through spectral kernels to be evaluated on the homogeneous electron-gas. After a brief review of their theory, the case of inhomogeneous Bose superfluids is considered, with main focus on dynamic Kohn-Sham equations for the condensate in the linear response regime and on quantal generalized hydrodynamic equations in the weak inhomogeneity limit. We also present the results of calculations of the exchange-correlation spectra in both electron and superfluid boson systems.Comment: 12 pages, 2 figures, Postscript fil
    corecore