167 research outputs found

    High-field (high-frequency) EPR spectroscopy and structural characterization of a novel manganese(III) corrole

    Get PDF
    The X-ray structure, magnetic susceptibility, and high-field (high-frequency) EPR spectrum of manganese 5,10,15-tris(pentafluorophenyl) corrole unambiguously establish that the complex contains an isolated, slightly rhombic, manganese(III) center

    Structures and Reactivity Patterns of Group 9 Metallocorroles

    Get PDF
    Group 9 metallocorroles 1-M(PPh_3) and 1-M(py)_2 [M = Co(III), Rh(III), Ir(III); 1 denotes the trianion of 5,10,15-tris-pentafluorophenylcorrole] have been fully characterized by structural, spectroscopic, and electrochemical methods. Crystal structure analyses reveal that average metal−N(pyrrole) bond lengths of the bis-pyridine metal(III) complexes increase from Co (1.886 Å) to Rh (1.957 Å)/Ir (1.963 Å); and the average metal−N(pyridine) bond lengths also increase from Co (1.995 Å) to Rh (2.065 Å)/Ir (2.059 Å). Ligand affinities for 1-M(PPh_3) axial coordination sites increase dramatically in the order 1-Co(PPh_3) < 1-Rh(PPh_3) < 1-Ir(PPh_3). There is a surprising invariance in the M(+/0) reduction potentials within the five- and six-coordinate corrole series, and even between them; the average M(+/0) potential of 1-M(PPh_3) is 0.78 V vs Ag/AgCl in CH_2Cl_2 solution, whereas that of 1-M(py)_2 is 0.70 V under the same conditions. Electronic structures of one-electron-oxidized 1-M(py)_2 complexes have been assigned by analysis of electron paramagnetic resonance spectroscopic measurements: oxidation is corrole-centered for 1-Co(py)_2 (g = 2.008) and 1-Rh(py)_2 (g = 2.003), and metal-centered for 1-Ir(tma)_2 (g_(zz) = 2.489, g_(yy) = 2.010, g_(xx) = 1.884, g_(av) = 2.128) and 1-Ir(py)_2 (g_(zz) = 2.401, g_(yy) = 2.000, g_(xx) = 1.937, g_(av) = 2.113)

    Iodinated Aluminum(III) Corroles with Long-Lived Triplet Excited States

    Get PDF
    The first reported iodination of a corrole leads to selective functionalization of the four C–H bonds on one pole of the macrocycle. An aluminum(III) complex of the tetraiodinated corrole, which exhibits red fluorescence, possesses a long-lived triplet excited state

    Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo

    Get PDF
    We report a novel in vivo spectral imaging approach to cancer detection and chemotherapy assessment. We describe and characterize a ratiometric spectral imaging and analysis method and evaluate its performance for tumor detection and delineation by quantitatively monitoring the specific accumulation of targeted gallium corrole (HerGa) into HER2-positive (HER2 +) breast tumors. HerGa temporal accumulation in nude mice bearing HER2 + breast tumors was monitored comparatively by a. this new ratiometric imaging and analysis method; b. established (reflectance and fluorescence) spectral imaging; c. more commonly used fluorescence intensity imaging. We also tested the feasibility of HerGa imaging in vivo using the ratiometric spectral imaging method for tumor detection and delineation. Our results show that the new method not only provides better quantitative information than typical spectral imaging, but also better specificity than standard fluorescence intensity imaging, thus allowing enhanced in vivo outlining of tumors and dynamic, quantitative monitoring of targeted chemotherapy agent accumulation into them

    Electronic Structures of Group 9 Metallocorroles with Axial Ammines

    Get PDF
    The electronic structures of metallocorroles (tpfc)M(NH_3)_2 and (tfc)M(NH_3)_2 (tpfc is the trianion of 5,10,15-(tris)pentafluorophenylcorrole, tfc is the trianion of 5,10,15-trifluorocorrole, and M = Co, Rh, Ir) have been computed using first principles quantum mechanics [B3LYP flavor of Density Functional Theory (DFT) with Poisson−Boltzmann continuum solvation]. The geometry was optimized for both the neutral systems (formal M^(III) oxidation state) and the one-electron oxidized systems (formally M^(IV)). As expected, the M^(III) systems have a closed shell d^6 configuration; for all three metals, the one-electron oxidation was calculated to occur from a ligand-based orbital (highest occupied molecular orbital (HOMO) of B_1 symmetry). The ground state of the formal M^(IV) system has M^(III)-Cπ character, indicating that the metal remains d^6, with the hole in the corrole π system. As a result the calculated M^(IV/III) reduction potentials are quite similar (0.64, 0.67, and 0.56 V vs SCE for M = Ir, Rh and Co, respectively), whereas the differences would have been large for purely metal-based oxidations. Vertically excited states with substantial metal character are well separated from the ground state in one-electron-oxidized cobalt (0.27 eV) and rhodium (0.24 eV) corroles, but become closer in energy in the iridium (0.15 eV) analogues. The exact splittings depend on the chosen functional and basis set combination and vary by ~0.1 eV

    Fighting Cancer with Corroles

    Get PDF
    Corroles are exceptionally promising platforms for the development of agents for simultaneous cancer-targeting imaging and therapy. Depending on the element chelated by the corrole, these theranostic agents may be tuned primarily for diagnostic or therapeutic function. Versatile synthetic methodologies allow for the preparation of amphipolar derivatives, which form stable noncovalent conjugates with targeting biomolecules. These conjugates can be engineered for imaging and targeting as well as therapeutic function within one theranostic assembly. In this review, we begin with a brief outline of corrole chemistry that has been uniquely useful in designing corrole-based anticancer agents. Then we turn attention to the early literature regarding corrole anticancer activity, which commenced one year after the first scalable synthesis was reported (1999–2000). In 2001, a major advance was made with the introduction of negatively charged corroles, as these molecules, being amphipolar, form stable conjugates with many proteins. More recently, both cellular uptake and intracellular trafficking of metallocorroles have been documented in experimental investigations employing advanced optical spectroscopic as well as magnetic resonance imaging techniques. Key results from work on both cellular and animal models are reviewed, with emphasis on those that have shed new light on the mechanisms associated with anticancer activity. In closing, we predict a very bright future for corrole anticancer research, as it is experiencing exponential growth, taking full advantage of recently developed imaging and therapeutic modalities

    Investigating photoexcitation-induced mitochondrial damage by chemotherapeutic corroles using multimode optical imaging

    Get PDF
    We recently reported that a targeted, brightly fluorescent gallium corrole (HerGa) is highly effective for breast tumor detection and treatment. Unlike structurally similar porphryins, HerGa exhibits tumor-targeted toxicity without the need for photoexcitation. We have now examined whether photoexcitation further modulates HerGa toxicity, using multimode optical imaging of live cells, including two-photon excited fluorescence, differential interference contrast (DIC), spectral, and lifetime imaging. Using two-photon excited fluorescence imaging, we observed that light at specific wavelengths augments the HerGa-mediated mitochondrial membrane potential disruption of breast cancer cells in situ. In addition, DIC, spectral, and fluorescence lifetime imaging enabled us to both validate cell damage by HerGa photoexcitation and investigate HerGa internalization, thus allowing optimization of light dose and timing. Our demonstration of HerGa phototoxicity opens the way for development of new methods of cancer intervention using tumor-targeted corroles

    A cytotoxic and cytostatic gold(III) corrole

    Get PDF
    We have synthesized and characterized a water-soluble gold(III) corrole (1-Au) that is highly toxic to cisplatin-resistant cancer cells. Relative to its 1-Ga analogue, axial ligands bind only weakly to 1-Au, which likely accounts for its lower affinity for human serum albumin (HSA). We suggest that the cytotoxicity of 1-Au may be related to this lower HSA affinity

    A Combined Vis-Pump Supercontinuum Probe and Broadband Fluorescence Up- Conversion Study

    Get PDF
    Corroles are a developing class of tetrapyrrole-based molecules with significant chemical potential and relatively unexplored photophysical properties. We combined femtosecond broadband fluorescence up-conversion and fs broadband Vis-pump Vis-probe spectroscopy to comprehensively characterize the photoreaction of 5,10,15-tris-pentafluorophenyl-corrolato-antimony(V )-trans-difluoride (Sb-tpfc-F2). Upon fs Soret band excitation at ~400 nm, the energy relaxed almost completely to Q band electronic excited states with a time constant of 500 ± 100 fs; this is evident from the decay of Soret band fluorescence at around 430 nm and the rise time of Q band fluorescence, as well as from Q band stimulated emission signals at 600 and 650 nm with the same time constant. Relaxation processes on a time scale of 10 and 20 ps were observed in the fluorescence and absorption signals. Triplet formation showed a time constant of 400 ps, with an intersystem crossing yield from the Q band to the triplet manifold of between 95% and 99%. This efficient triplet formation is due to the spin-orbit coupling of the antimony ion
    corecore