6,979 research outputs found

    The Universe and The Quantum Computer

    Full text link
    It is first pointed out that there is a common mathematical model for the universe and the quantum computer. The former is called the histories approach to quantum mechanics and the latter is called measurement based quantum computation. Although a rigorous concrete model for the universe has not been completed, a quantum measure and integration theory has been developed which may be useful for future progress. In this work we show that the quantum integral is the unique functional satisfying certain basic physical and mathematical principles. Since the set of paths (or trajectories) for a quantum computer is finite, this theory is easier to treat and more developed. We observe that the sum of the quantum measures of the paths is unity and the total interference vanishes. Thus, constructive interference is always balanced by an equal amount of destructive interference. As an example we consider a simplified two-slit experimentComment: 15 pages, IQSA 2010 proceeding

    Unambiguous determination of spin dephasing times in ZnO

    Full text link
    Time-resolved magneto-optics is a well-established optical pump probe technique to generate and to probe spin coherence in semiconductors. By this method, spin dephasing times T_2^* can easily be determined if their values are comparable to the available pump-probe-delays. If T_2^* exceeds the laser repetition time, however, resonant spin amplification (RSA) can equally be used to extract T_2^*. We demonstrate that in ZnO these techniques have several tripping hazards resulting in deceptive values for T_2^* and show how to avoid them. We show that the temperature dependence of the amplitude ratio of two separate spin species can easily be misinterpreted as a strongly temperature dependent T_2^* of a single spin ensemble, while the two spin species have T_2^* values which are nearly independent of temperature. Additionally, consecutive pump pulses can significantly diminish the spin polarization, which remains from previous pump pulses. While this barely affects T_2^* values extracted from delay line scans, it results in seemingly shorter T_2^* values in RSA.Comment: 11 pages, 10 figure

    Predictors of Venous Thromboembolism in Patients with Advanced Common Solid Cancers

    Get PDF
    There is uncertainty about risk heterogeneity for venous thromboembolism (VTE) in older patients with advanced cancer and whether patients can be stratified according to VTE risk. We performed a retrospective cohort study of the linked Medicare-Surveillance, Epidemiology, and End Results cancer registry in older patients with advanced cancer of lung, breast, colon, prostate, or pancreas diagnosed between 1995–1999. We used survival analysis with demographics, comorbidities, and tumor characteristics/treatment as independent variables. Outcome was VTE diagnosed at least one month after cancer diagnosis. VTE rate was highest in the first year (3.4%). Compared to prostate cancer (1.4 VTEs/100 person-years), there was marked variability in VTE risk (hazard ratio (HR) for male-colon cancer 3.73 (95% CI 2.1–6.62), female-colon cancer HR 6.6 (3.83–11.38), up to female-pancreas cancer HR 21.57 (12.21–38.09). Stage IV cancer and chemotherapy resulted in higher risk (HRs 1.75 (1.44–2.12) and 1.31 (1.0–1.57), resp.). Stratifying the cohort by cancer type and stage using recursive partitioning analysis yielded five groups of VTE rates (nonlocalized prostate cancer 1.4 VTEs/100 person-years, to nonlocalized pancreatic cancer 17.4 VTEs/100 patient-years). In a high-risk population with advanced cancer, substantial variability in VTE risk exists, with notable differences according to cancer type and stage

    Flat-space scattering and bulk locality in the AdS/CFT correspondence

    Full text link
    The large radius limit in the AdS/CFT correspondence is expected to provide a holographic derivation of flat-space scattering amplitudes. This suggests that questions of locality in the bulk should be addressed in terms of properties of the S-matrix and their translation into the conformal field theory. There are, however, subtleties in this translation related to generic growth of amplitudes near the boundary of anti de-Sitter space. Flat space amplitudes are recovered after a delicate projection of CFT correlators onto normal-mode frequencies of AdS. Once such amplitudes are obtained from the CFT, possible criteria for approximate bulk locality include bounds on growth of amplitudes at high energies and reproduction of semiclassical gravitational scattering at long distances.Comment: 25 pages, harvmac. v2: Very minor corrections to eqs. v3: Minor improvements of discussion of locality bounds and string scattering v4. Typos fixe

    Spontaneous emission from large quantum dots in nanostructures: exciton-photon interaction beyond the dipole approximation

    Get PDF
    We derive a rigorous theory of the interaction between photons and spatially extended excitons confined in quantum dots in inhomogeneous photonic materials. We show that, beyond the dipole approximation, the radiative decay rate is proportional to a non-local interaction function, which describes the interaction between light and spatially extended excitons. In this regime, light and matter degrees of freedom cannot be separated and a complex interplay between the nanostructured optical environment and the exciton envelope function emerges. We illustrate this by specific examples and derive a series of important analytical relations, which are useful for applying the formalism to practical problems. In the dipole limit, the decay rate is proportional to the projected local density of optical states and we obtain the strong and weak confinement regimes as special cases.Comment: 14 pages, 4 figure

    Interacting Dipoles from Matrix Formulation of Noncommutative Gauge Theories

    Get PDF
    We study the IR behavior of noncommutative gauge theory in the matrix formulation. We find that in this approach, the nature of the UV/IR mixing is easily understood, which allows us to perform a reliable calculation of the quantum effective action for the long wavelength modes of the noncommutative gauge field. At one loop, we find that our description is weakly coupled only in the supersymmetric theory. At two loops, we find non-trivial interaction terms suggestive of dipole degrees of freedom. These dipoles exhibit a channel duality reminiscent of string theory.Comment: LaTeX 11 pages, 4 figures; v.2 minor changes and some references added; v.3 many more technical details added and significantly different presentation, use REVTeX 4, to appear in PR

    Local charge and spin currents in magnetothermal landscapes

    Full text link
    A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging

    The EDAM Project: Mining Atmospheric Aerosol Datasets

    Get PDF
    Data mining has been a very active area of research in the database, machine learning, and mathematical programming communities in recent years. EDAM (Exploratory Data Analysis and Management) is a joint project between researchers in Atmospheric Chemistry and Computer Science at Carleton College and the University of Wisconsin-Madison that aims to develop data mining techniques for advancing the state of the art in analyzing atmospheric aerosol datasets. There is a great need to better understand the sources, dynamics, and compositions of atmospheric aerosols. The traditional approach for particle measurement, which is the collection of bulk samples of particulates on filters, is not adequate for studying particle dynamics and real-time correlations. This has led to the development of a new generation of real-time instruments that provide continuous or semi-continuous streams of data about certain aerosol properties. However, these instruments have added a significant level of complexity to atmospheric aerosol data, and dramatically increased the amounts of data to be collected, managed, and analyzed. Our abilit y to integrate the data from all of these new and complex instruments now lags far behind our data-collection capabilities, and severely limits our ability to understand the data and act upon it in a timely manner. In this paper, we present an overview of the EDAM project. The goal of the project, which is in its early stages, is to develop novel data mining algorithms and approaches to managing and monitoring multiple complex data streams. An important objective is data quality assurance, and real-time data mining offers great potential. The approach that we take should also provide good techniques to deal with gas-phase and semi-volatile data. While atmospheric aerosol analysis is an important and challenging domain that motivates us with real problems and serves as a concrete test of our results, our objective is to develop techniques that have broader applicability, and to explore some fundamental challenges in data mining that are not specific to any given application domain
    corecore