13 research outputs found

    Gene therapy for carcinoma of the breast: Pro-apoptotic gene therapy

    Get PDF
    The dysregulation of apoptosis contributes in a variety of ways to the malignant phenotype. It is increasingly recognized that the alteration of pro-apoptotic and anti-apoptotic molecules determines not only escape from mechanisms that control cell cycle and DNA damage, but also endows the cancer cells with the capacity to survive in the presence of a metabolically adverse milieu, to resist the attack of the immune system, to locally invade and survive despite a lack of tissue anchorage, and to evade the otherwise lethal insults induced by drugs and radiotherapy. A multitude of apoptosis mediators has been identified in the past decade, and the roles of several of them in breast cancer have been delineated by studying the clinical correlates of pathologically documented abnormalities. Using this information, attempts are being made to correct the fundamental anomalies at the genetic level. Fundamental to this end are the design of more efficient and selective gene transfer systems, and the employment of complex interventions that are tailored to breast cancer and that are aimed concomitantly towards different components of the redundant regulatory pathways. The combination of such genetic modifications is most likely to be effective when combined with conventional treatments, thus robustly activating several pro-apoptotic pathways

    CD8 apoptosis may be a predictor of T cell number normalization after immune reconstitution in HIV

    No full text
    Abstract Background As part of the Houston Vanguard study, a subset of 10 patients randomized to receive IL-2 therapy were compared to 4 patients randomized to not receive IL-2, for markers of T cell activation and death during the first three cycles of IL-2. All patients were treated with combination antiretroviral therapy (ART) and were virally suppressed. The purpose of the study was to examine the role of CD8+ T cell death in responses to ART and IL-2 therapy. Methods Lymphocytes were examined at Day 0, 5 and 30 days during three cycles of IL-2 therapy. CD25, CD38, HLA-DR expression and annexin (cell death) were examined on CD4 and CD8 subpopulations. Follow up studies examined CD4 levels and CD4:CD8 reconstitution after 6 years using both univariant and multivariate analyses. Results Human lymphocytes responded to IL-2 therapy by upregulation of CD25 on CD4+ T cells, leading to an increase in CD4 cell counts. CD8+ T cells did not increase CD25 expression, but upregulated activation antigens (CD38 and DR) and had increased death. At baseline, 7 of the 14 patients had high CD8+ T cell apoptosis (mean 17.0% ± 6.0). We did an exploratory analysis of immune status after six years, and found that baseline CD8+ T cell apoptosis was correlated with CD4 cell count gain beginning two years post enrollment. Patients with low levels of CD8+ T cell apoptosis at baseline (mean 2.2% ± 2.1) had significantly higher CD4 cell counts and more normalized CD4:CD8 ratios than patients with high CD8+ T cell apoptosis (mean CD4 cell counts 1,209 ± 164 vs 754 ± 320 cells/mm3; CD4:CD8 ratios 1.55 vs. 0.70, respectively). Conclusion We postulate that CD8+ T cell apoptosis may reflect inherent activation status, which continues in some patients even though viral replication is suppressed which influences the ability of CD4+ T cells to rebound. Levels of CD8+ T cell apoptosis may therefore be an independent predictor of immune status, which should be shown in a prospective study.</p

    Occupational Contact Dermatitis

    No full text

    The Hematopoietic System

    No full text
    corecore