735 research outputs found

    Expanded progenitor populations, vitreo-retinal abnormalities, and Müller glial reactivity in the zebrafish leprechaun/patched2 retina

    Get PDF
    Jonathan Bibliowicz and Jeffery M. Gross are with the Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX, USA, and the Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA -- Jeffery M. Gross is with the Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USABackground: The roles of the Hedgehog (Hh) pathway in controlling vertebrate retinal development have been studied extensively; however, species- and context-dependent findings have provided differing conclusions. Hh signaling has been shown to control both population size and cell cycle kinetics of proliferating retinal progenitors, and to modulate differentiation within the retina by regulating the timing of cell cycle exit. While cell cycle exit has in turn been shown to control cell fate decisions within the retina, a direct role for the Hh pathway in retinal cell fate decisions has yet to be established in vivo. Results: To gain further insight into Hh pathway function in the retina, we have analyzed retinal development in leprechaun/patched2 mutant zebrafish. While lep/ptc2 mutants possessed more cells in their retinas, all cell types, except for Müller glia, were present at identical ratios as those observed in wild-type siblings. lep/ptc2 mutants possessed a localized upregulation of GFAP, a marker for 'reactive' glia, as well as morphological abnormalities at the vitreo-retinal interface, where Müller glial endfeet terminate. In addition, analysis of the over-proliferation phenotype at the ciliary marginal zone (CMZ) revealed that the number of proliferating progenitors, but not the rate of proliferation, was increased in lep/ptc2 mutants. Conclusion: Our results indicate that Patched2-dependent Hh signaling does not likely play an integral role in neuronal cell fate decisions in the zebrafish retina. ptc2 deficiency in zebrafish results in defects at the vitreo-retinal interface and Müller glial reactivity. These phenotypes are similar to the ocular abnormalities observed in human patients suffering from Basal Cell Naevus Syndrome (BCNS), a disorder that has been linked to mutations in the human PTCH gene (the orthologue of the zebrafish ptc2), and point to the utility of the lep/ptc2 mutant line as a model for the study of BCNS-related ocular pathologies. Our findings regarding CMZ progenitor proliferation suggest that, in the zebrafish retina, Hh pathway activity may not affect cell cycle kinetics; rather, it likely regulates the size of the retinal progenitor pool in the CMZ.Institute for Cellular and Molecular [email protected]

    Quasiparticle spectra from a non-empirical optimally-tuned range-separated hybrid density functional

    Full text link
    We present a method for obtaining outer valence quasiparticle excitation energies from a DFT-based calculation, with accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters - the range separation and the short-range Fock fraction. Both are determined non-empirically, per system, based on satisfaction of exact physical constraints for the ionization potential and many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA) and 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA). We envision that for finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems

    Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina

    Get PDF
    BACKGROUND: Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. RESULTS: The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. CONCLUSIONS: These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins

    Topological closed-string interpretation of Chern-Simons theory

    Get PDF
    The exact free energy of SU(NN) Chern-Simons theory at level kk is expanded in powers of (N+k)2.(N+k)^{-2}. This expansion keeps rank-level duality manifest, and simplifies as kk becomes large, keeping NN fixed (or vice versa)---this is the weak-coupling (strong-coupling) limit. With the standard normalization, the free energy on the three-sphere in this limit is shown to be the generating function of the Euler characteristics of the moduli spaces of surfaces of genus g,g, providing a string interpretation for the perturbative expansion. A similar expansion is found for the three-torus, with differences that shed light on contributions from different spacetime topologies in string theory.Comment: 6 pages, iassns-hep-93-30 (title change, omitted refs. added, two sign errors corrected, no significant change

    Scattering of Macroscopic Heterotic Strings

    Get PDF
    We show that macroscopic heterotic strings, formulated as strings which wind around a compact direction of finite but macroscopic extent, exhibit non-trivial scattering at low energies. This occurs at order velocity squared and may thus be described as geodesic motion on a moduli space with a non-trivial metric which we construct. Our result is in agreement with a direct calculation of the string scattering amplitude.Comment: 14 pp (harvmac l

    Localization for Yang-Mills Theory on the Fuzzy Sphere

    Full text link
    We present a new model for Yang-Mills theory on the fuzzy sphere in which the configuration space of gauge fields is given by a coadjoint orbit. In the classical limit it reduces to ordinary Yang-Mills theory on the sphere. We find all classical solutions of the gauge theory and use nonabelian localization techniques to write the partition function entirely as a sum over local contributions from critical points of the action, which are evaluated explicitly. The partition function of ordinary Yang-Mills theory on the sphere is recovered in the classical limit as a sum over instantons. We also apply abelian localization techniques and the geometry of symmetric spaces to derive an explicit combinatorial expression for the partition function, and compare the two approaches. These extend the standard techniques for solving gauge theory on the sphere to the fuzzy case in a rigorous framework.Comment: 55 pages. V2: references added; V3: minor corrections, reference added; Final version to be published in Communications in Mathematical Physic

    Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis

    Get PDF
    BACKGROUND: Psychosis is a severe mental condition that is characterized by a loss of contact with reality and is typically associated with hallucinations and delusional beliefs. There are numerous psychiatric conditions that present with psychotic symptoms, most importantly schizophrenia, bipolar affective disorder, and some forms of severe depression referred to as psychotic depression. The pathological mechanisms resulting in psychotic symptoms are not understood, nor is it understood whether the various psychotic illnesses are the result of similar biochemical disturbances. The identification of biological markers (so-called biomarkers) of psychosis is a fundamental step towards a better understanding of the pathogenesis of psychosis and holds the potential for more objective testing methods. METHODS AND FINDINGS: Surface-enhanced laser desorption ionization mass spectrometry was employed to profile proteins and peptides in a total of 179 cerebrospinal fluid samples (58 schizophrenia patients, 16 patients with depression, five patients with obsessive-compulsive disorder, ten patients with Alzheimer disease, and 90 controls). Our results show a highly significant differential distribution of samples from healthy volunteers away from drug-naïve patients with first-onset paranoid schizophrenia. The key alterations were the up-regulation of a 40-amino acid VGF-derived peptide, the down-regulation of transthyretin at approximately 4 kDa, and a peptide cluster at approximately 6,800-7,300 Da (which is likely to be influenced by the doubly charged ions of the transthyretin protein cluster). These schizophrenia-specific protein/peptide changes were replicated in an independent sample set. Both experiments achieved a specificity of 95% and a sensitivity of 80% or 88% in the initial study and in a subsequent validation study, respectively. CONCLUSIONS: Our results suggest that the application of modern proteomics techniques, particularly mass spectrometric approaches, holds the potential to advance the understanding of the biochemical basis of psychiatric disorders and may in turn allow for the development of diagnostics and improved therapeutics. Further studies are required to validate the clinical effectiveness and disease specificity of the identified biomarkers

    Microbiota‐Dependent Metabolite Trimethylamine N‐Oxide and Coronary Artery Calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA)

    Get PDF
    BACKGROUND: Clinical studies implicate trimethylamine N-oxide (TMAO; a gut microbiota-dependent nutrient metabolite) in cardiovascular disease risk. There is a lack of population-based data on the role of TMAO in advancing early atherosclerotic disease. We tested the prospective associations between TMAO and coronary artery calcium (CAC) and carotid intima-media thickness (cIMT). METHODS AND RESULTS: Data were from the Coronary Artery Risk Development in Young Adults Study (CARDIA), a biracial cohort of US adults recruited in 1985-1986 (n=5115). We randomly sampled 817 participants (aged 33-55 years) who attended examinations in 2000-2001, 2005-2006, and 2010-2011, at which CAC was measured by computed tomography and cIMT (2005-2006) by ultrasound. TMAO was quantified using liquid chromotography mass spectrometry on plasma collected in 2000-2001. Outcomes were incident CAC, defined as Agatston units=0 in 2000-2001 and >0 over 10-year follow-up, CAC progression (any increase over 10-year follow-up), and continuous cIMT. Over the study period, 25% (n=184) of those free of CAC in 2000-2001 (n=746) developed detectable CAC. In 2000-2001, median (interquartile range) TMAO was 2.6 (1.8-4.2) μmol/L. In multivariable-adjusted models, TMAO was not associated with 10-year CAC incidence (rate ratio=1.03; 95% CI: 0.71-1.52) or CAC progression (0.97; 0.68-1.38) in Poisson regression, or cIMT (beta coefficient: -0.009; -0.03 to 0.01) in linear regression, comparing the fourth to the first quartiles of TMAO. CONCLUSIONS: In this population-based study, TMAO was not associated with measures of atherosclerosis: CAC incidence, CAC progression, or cIMT. These data indicate that TMAO may not contribute significantly to advancing early atherosclerotic disease risk among healthy early-middle-aged adults

    CSF Metabolic and Proteomic Profiles in Patients Prodromal for Psychosis

    Get PDF
    BACKGROUND: The initial prodromal state of psychosis (IPS) is defined as an early disease stage prior to the onset of overt psychosis characterized by sub-threshold or more unspecific psychiatric symptoms. Little is known regarding the biochemical changes during this period. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the metabolic/proteomic profiles of cerebrospinal fluid (CSF) of first-onset drug naïve paranoid schizophrenia patients (n = 54) and individuals presenting with initial prodromal symptoms (n = 24), alongside healthy volunteers (n = 70) using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and surface enhanced laser desorption ionization (SELDI) mass spectrometry, respectively. Partial least square discriminant analysis (PLS-DA) showed that 36%/29% of IPS patients displayed proteomic/metabolic profiles characteristic of first-onset, drug naïve schizophrenia, i.e., changes in levels of glucose and lactate as well as changes in a VGF-derived peptide (VGF23-62) and transthyretin protein concentrations. However, only 29% (n = 7) of the investigated IPS patients (who to date have been followed up for up to three years) have so far received a diagnosis of schizophrenia. The presence of biochemical alterations in the IPS group did not correlate with the risk to develop schizophrenia. CONCLUSIONS/SIGNIFICANCE: Our results imply that schizophrenia-related biochemical disease processes can be traced in CSF of prodromal patients. However, the biochemical disturbances identified in IPS patients, at least when measured at a single time point, may not be sufficient to predict clinical outcome
    corecore