500 research outputs found

    On scale-free and poly-scale behaviors of random hierarchical network

    Full text link
    In this paper the question about statistical properties of block--hierarchical random matrices is raised for the first time in connection with structural characteristics of random hierarchical networks obtained by mipmapping procedure. In particular, we compute numerically the spectral density of large random adjacency matrices defined by a hierarchy of the Bernoulli distributions {q1,q2,...}\{q_1,q_2,...\} on matrix elements, where qγq_{\gamma} depends on hierarchy level γ\gamma as qγ=pμγq_{\gamma}=p^{-\mu \gamma} (μ>0\mu>0). For the spectral density we clearly see the free--scale behavior. We show also that for the Gaussian distributions on matrix elements with zero mean and variances σγ=pνγ\sigma_{\gamma}=p^{-\nu \gamma}, the tail of the spectral density, ρG(λ)\rho_G(\lambda), behaves as ρG(λ)λ(2ν)/(1ν)\rho_G(\lambda) \sim |\lambda|^{-(2-\nu)/(1-\nu)} for λ|\lambda|\to\infty and 0<ν<10<\nu<1, while for ν1\nu\ge 1 the power--law behavior is terminated. We also find that the vertex degree distribution of such hierarchical networks has a poly--scale fractal behavior extended to a very broad range of scales.Comment: 11 pages, 6 figures (paper is substantially revised

    New alphabet-dependent morphological transition in a random RNA alignment

    Full text link
    We study the fraction ff of nucleotides involved in the formation of a cactus--like secondary structure of random heteropolymer RNA--like molecules. In the low--temperature limit we study this fraction as a function of the number cc of different nucleotide species. We show, that with changing cc, the secondary structures of random RNAs undergo a morphological transition: f(c)1f(c)\to 1 for cccrc \le c_{\rm cr} as the chain length nn goes to infinity, signaling the formation of a virtually "perfect" gapless secondary structure; while f(c)ccrf(c)c_{\rm cr}, what means that a non-perfect structure with gaps is formed. The strict upper and lower bounds 2ccr42 \le c_{\rm cr} \le 4 are proven, and the numerical evidence for ccrc_{\rm cr} is presented. The relevance of the transition from the evolutional point of view is discussed.Comment: 4 pages, 3 figures (title is changed, text is essentially reworked), accepted in PR

    Multiscale entanglement in ring polymers under spherical confinement

    Full text link
    The interplay of geometrical and topological entanglement in semiflexible knotted polymer rings confined inside a spherical cavity is investigated using advanced numerical methods. By using stringent and robust algorithms for locating knots, we characterize how the knot length lk depends on the ring contour length, Lc and the radius of the confining sphere, Rc . In the no- and strong- confinement cases we observe weak knot localization and complete knot delocalization, respectively. We show that the complex interplay of lk, Lc and Rc that seamlessly bridges these two limits can be encompassed by a simple scaling argument based on deflection theory. The same argument is used to rationalize the multiscale character of the entanglement that emerges with increasing confinement.Comment: 9 pages 9 figure

    Error-proof programmable self-assembly of DNA-nanoparticle clusters

    Full text link
    We study theoretically a new generic scheme of programmable self-assembly of nanoparticles into clusters of desired geometry. The problem is motivated by the feasibility of highly selective DNA-mediated interactions between colloidal particles. By analyzing both a simple generic model and a more realistic description of a DNA-colloidal system, we demonstrate that it is possible to suppress the glassy behavior of the system, and to make the self-assembly nearly error-proof. This regime requires a combination of stretchable interparticle linkers (e.g. sufficiently long DNA), and a soft repulsive potential. The jamming phase diagram and the error probability are computed for several types of clusters. The prospects for the experimental implementation of our scheme are also discussed. PACS numbers: 81.16.Dn, 87.14.Gg, 36.40.EiComment: 6 pages, 4 figures, v2: substantially revised version, added journal re

    Entropically driven transition to a liquid-crystalline polymer globule

    Full text link
    A self-consistent-field theory (SCFT) in the grand canonical ensemble formulation is used to study transitions in a helix-coil multiblock copolymer globule. The helices are modeled as stiff rods. In addition to the established coil-globule transition we show for the first time that, even without explicit rod-rod alignment interaction, the system undergoes a transition to a nematic liquid-crystalline (LC) globular state. The LC-globule formation is driven by the hydrophobic helical segment attraction and the anisotropy of the globule surface energy. The full phase diagram of the copolymer was calculated. It discriminates between an open chain, amorphous globule and LC-globule. This model provides a relatively simple example of the interplay between secondary and tertiary structures in homopolypeptides. Moreover, it gives a simple explanation for the formation of helix bundles in certain globular proteins.Comment: 5 pages, 5 figures, submitted to Europhys. Let

    On the Limits of Analogy Between Self-Avoidance and Topology-Driven Swelling of Polymer Loops

    Full text link
    The work addresses the analogy between trivial knotting and excluded volume in looped polymer chains of moderate length, N<N0N<N_0, where the effects of knotting are small. A simple expression for the swelling seen in trivially knotted loops is described and shown to agree with simulation data. Contrast between this expression and the well known expression for excluded volume polymers leads to a graphical mapping of excluded volume to trivial knots, which may be useful for understanding where the analogy between the two physical forms is valid. The work also includes description of a new method for the computational generation of polymer loops via conditional probability. Although computationally intensive, this method generates loops without statistical bias, and thus is preferable to other loop generation routines in the region N<N0N<N_0.Comment: 10 pages, 5 figures, supplementary tex file and datafil

    Self-assembling DNA-caged particles: nanoblocks for hierarchical self-assembly

    Full text link
    DNA is an ideal candidate to organize matter on the nanoscale, primarily due to the specificity and complexity of DNA based interactions. Recent advances in this direction include the self-assembly of colloidal crystals using DNA grafted particles. In this article we theoretically study the self-assembly of DNA-caged particles. These nanoblocks combine DNA grafted particles with more complicated purely DNA based constructs. Geometrically the nanoblock is a sphere (DNA grafted particle) inscribed inside a polyhedron (DNA cage). The faces of the DNA cage are open, and the edges are made from double stranded DNA. The cage vertices are modified DNA junctions. We calculate the equilibriuim yield of self-assembled, tetrahedrally caged particles, and discuss their stability with respect to alternative structures. The experimental feasability of the method is discussed. To conclude we indicate the usefulness of DNA-caged particles as nanoblocks in a hierarchical self-assembly strategy.Comment: v2: 21 pages, 8 figures; revised discussion in Sec. 2, replaced 2 figures, added new reference

    Helical, Angular and Radial Ordering in Narrow Capillaries

    Full text link
    To enlighten the nature of the order-disorder and order-order transitions in block copolymer melts confined in narrow capillaries we analyze peculiarities of the conventional Landau weak crystallization theory of systems confined to cylindrical geometry. This phenomenological approach provides a quantitative classification of the cylindrical ordered morphologies by expansion of the order parameter spatial distribution into the eigenfunctions of the Laplace operator. The symmetry of the resulting ordered morphologies is shown to strongly depend both on the boundary conditions (wall preference) and the ratio of the cylinder radius and the wave length of the critical order parameter fluctuations, which determine the bulk ordering of the system under consideration. In particular, occurrence of the helical morphologies is a rather general consequence of the imposed cylindrical symmetry for narrow enough capillaries. We discuss also the ODT and OOT involving some other simplest morphologies. The presented results are relevant also to other ordering systems as charge-density waves appearing under addition of an ionic solute to a solvent in its critical region, weakly charged polyelectrolyte solutions in poor solvent, microemulsions etc.Comment: 6 pages, 3 figure

    Globular Structures of a Helix-Coil Copolymer: Self-Consistent Treatment

    Full text link
    A self-consistent field theory was developed in the grand-canonical ensemble formulation to study transitions in a helix-coil multiblock globule. Helical and coil parts are treated as stiff rods and self-avoiding walks of variable lengths correspondingly. The resulting field-theory takes, in addition to the conventional Zimm-Bragg (B.H. Zimm, I.K. Bragg, J. Chem. Phys. 31, 526 (1959)) parameters, also three-dimensional interaction terms into account. The appropriate differential equations which determine the self-consistent fields were solved numerically with finite element method. Three different phase states are found: open chain, amorphous globule and nematic liquid-crystalline (LC) globule. The LC-globule formation is driven by the interplay between the hydrophobic helical segments attraction and the anisotropic globule surface energy of an entropic nature. The full phase diagram of the helix-coil copolymer was calculated and thoroughly discussed. The suggested theory shows a clear interplay between secondary and tertiary structures in globular homopolypeptides.Comment: 26 pages, 30 figures, corrected some typo

    Critical exponents for random knots

    Full text link
    The size of a zero thickness (no excluded volume) polymer ring is shown to scale with chain length NN in the same way as the size of the excluded volume (self-avoiding) linear polymer, as NνN^{\nu}, where ν0.588\nu \approx 0.588. The consequences of that fact are examined, including sizes of trivial and non-trivial knots.Comment: 4 pages, 0 figure
    corecore