23 research outputs found

    Broccoli sprout beverage is safe for thyroid hormonal and autoimmune status: Results of a 12-week randomized trial.

    Get PDF
    Sulforaphane is a redox-active natural product present in cruciferous vegetables like broccoli. Broccoli sprout-derived products are promising agents for the prevention of oxidative stress-related diseases, but some have long been suspected of thyroidal toxicity. Recent findings also raise the possibility that long-term exposure to sulforaphane, or to other natural substances or drugs that modulate the activity of the transcription factor Nrf2 (NFE2-related factor 2) may lead to thyroid dysfunction or thyroid autoimmune disease, questioning the safety of trials with sulforaphane-containing products. Previous studies addressing possible effects of sulforaphane-related compounds from natural product extracts on the thyroid were quite short and/or inconsistent. To investigate whether long-term exposure to a beverage enriched with sulforaphane and its precursor glucoraphanin may affect thyroid function, we analyzed biochemical measures of thyroid function and thyroid autoimmunity in 45 female participants in a randomized clinical trial at baseline and after 84 days of beverage administration. Serum levels of thyroid-stimulating hormone, free thyroxine and thyroglobulin were not affected by the treatment, and neither was the thyroid autoimmunity status of participants. These results provide evidence in favor of the safety of chemoprevention strategies that target the activation of Nrf2 to protect against environmental exposures and other oxidative stress-related pathologies

    Comparison of urinary aflatoxin M1 and aflatoxin albumin adducts as biomarkers for assessing aflatoxin exposure in Tanzanian children

    Get PDF
    Purpose: To determine levels of urinary aflatoxin M1 (AFM1) in children and correlate the concentrations with previously reported aflatoxin albumin adduct (AF-alb) levels in these children. Materials and methods: Matched urine and blood samples were collected from 84 Tanzanian children aged 6–14 months old. From 31 children in one village (Kigwa), samples were collected at three time points six months apart. Samples were collected from 31 and 22 children from two different regions at the second time point only. Urinary AFM1 was measured using a commercial enzyme-linked immunosorbent assay (ELISA) kit with a modified protocol to improve sensitivity. AF-alb was measured using an established ELISA method. Results: The relative ranking of the three villages for exposure to aflatoxin based on either AFM1 or AF-alb biomarker measurements was the same. In Kigwa village, both AFM1 and AF-alb levels were higher at six months post-harvest compared to baseline. However, at the next visit, the AFM1 levels dropped from a GM (interquartile range) of 71.0 (44.7, 112.6) at visit two to 49.3 (31.5, 77.3) pg/ml urine, whereas AF-alb levels increased from 47.3 (29.7, 75.2) to 52.7 (35.4, 78.3) pg/mg albumin between these two visits, reflecting the fact that AFM1 measures short-term exposure, whereas AF-alb measures longer term exposure. There was a correlation between AFB1 intake and AFM1 excretion (r= 0.442, p ≤ 0.001). Conclusions: Urinary AFM1 is a good biomarker for AFB1 exposure in Tanzanian children, reflecting geographical and temporal variations in exposure to this foodborne toxin

    Translational cancer research: Balancing prevention and treatment to combat cancer globally

    Get PDF
    Cancer research is drawing on the human genome project to develop new molecular-targeted treatments. This is an exciting but insufficient response to the growing, global burden of cancer, particularly as the projected increase in new cases in the coming decades is increasingly falling on developing countries. The world is not able to treat its way out of the cancer problem. However, the mechanistic insights from basic science can be harnessed to better understand cancer causes and prevention, thus underpinning a complementary public health approach to cancer control. This manuscript focuses on how new knowledge about the molecular and cellular basis of cancer, and the associated high-throughput laboratory technologies for studying those pathways, can be applied to population-based epidemiological studies, particularly in the context of large prospective cohorts with associated biobanks to provide an evidence base for cancer prevention. This integrated approach should allow a more rapid and informed translation of the research into educational and policy interventions aimed at risk reduction across a population
    corecore