1,984 research outputs found

    La politique de défense du gouvernement conservateur britannique

    Get PDF

    Is strong CP invariance due to a massless up quark?

    Full text link
    A standing mystery in the Standard Model is the unnatural smallness of the strong CP violating phase. A massless up quark has long been proposed as one potential solution. A lattice calculation of the constants of the chiral Lagrangian essential for the determination of the up quark mass, 2 alpha_8 - alpha_5, is presented. We find 2 alpha_8 - alpha_5 = 0.29 +/- 0.18, which corresponds to m_u / m_d = 0.410 +/- 0.036. This is the first such calculation using a physical number of dynamical light quarks, N_f = 3.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Lett., corrected small normalization error in f_pi (conclusions were unaffected), improved lattice spacing analysis, improved finite volume analysi

    Neutralino Dark Matter Elastic Scattering in a Flat and Accelerating Universe

    Get PDF
    In SUGRA inspired supersymmetric models with universal boundary conditions for the soft masses, the scalar cross section σscalar\sigma_{scalar} for the elastic neutralino--nucleon scattering is in general several orders of magnitude below the sensitivity of current experiments. For large tan⁥ÎČ\tan \beta and low M1/2,m0M_{1/2}, m_0 values, the theoretically predicted σscalar\sigma_{scalar} can approach the sensitivity of these experiments (≈10−6pb\approx 10^{-6} pb) being at the same time in agreement with recent cosmological data, which impose severe restrictions on the CDM relic density, and with accelerator experiments which put lower bounds on sparticle and Higgs boson masses. Further improvement of the sensitivity of DAMA and CDMS experiments will probe the large tan⁥ÎČ\tan \beta region of the parameter space in the vicinity of the boundaries of the parameter space allowed by chargino and Higgs searches.Comment: 15 pages, 9 figures. A note added; version to appear in MPL

    Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes

    Get PDF
    Spectacular processes in astrophysical sites produce high-energy cosmic rays which are further accelerated by Fermi-shocks into a power-law spectrum. These, in passing through radiation fields and matter, produce neutrinos. Neutrino telescopes are designed with large detection volumes to observe such astrophysical sources. A large volume is necessary because the fluxes and cross-sections are small. We estimate various telescopes' sensitivities and expected event rates from astrophysical sources of high-energy neutrinos. We find that an ideal detector of km^2 incident area can be sensitive to a flux of neutrinos integrated over energy from 10^5 and 10^{7} GeV as low as 1.3 * 10^(-8) * E^(-2) (GeV/cm^2 s sr) which is three times smaller than the Waxman-Bachall conservative upper limit on potential neutrino flux. A real detector will have degraded performance. Detection from known point sources is possible but unlikely unless there is prior knowledge of the source location and neutrino arrival time.Comment: Section added +modification

    Unknowns after the SNO Charged-Current Measurement

    Get PDF
    We perform a model-independent analysis of solar neutrino flux rates including the recent charged-current measurement at the Sudbury Neutrino Observatory (SNO). We derive a universal sum rule involving SNO and SuperKamiokande rates, and show that the SNO neutral-current measurement can not fix the fraction of solar Îœe\nu_e oscillating to sterile neutrinos. The large uncertainty in the SSM 8^8B flux impedes a determination of the sterile neutrino fraction.Comment: Version to appear in PRL; includes analysis with anticipated SNO NC measuremen

    Radiative corrections to all charge assignments of heavy quark baryon semileptonic decays

    Get PDF
    In semileptonic decays of spin-1/2 baryons containing heavy quarks up to six charge assignments for the baryons and lepton are possible. We show that the radiative corrections to four of these possibilities can be directly obtained from the final results of the two possibilities previously studied. There is no need to recalculate integrals over virtual or real photon momentum or any traces.Comment: 15 pages, 2 figures, RevTex. Extended discussion. Final version to appear in Physical Review

    Photoproduction of vector mesons in the Soft Dipole Pomeron model

    Get PDF
    Exclusive photoproduction of all vector mesons by real and virtual photons is considered in the Soft Dipole Pomeron model. It is emphasized that being the Pomeron in this model a double Regge pole with intercept equal to one, we are led to rising cross-sections but the unitarity bounds are not violated. It is shown that all available data for rho, omega, phi, J/psi and Upsilon in the region of energies 1.7 <= W <= 250 GeV and photon virtualities 0 <= Q^2 <= 35 GeV^2, including the differential cross-sections in the region of transfer momenta 0 <= |t| <= 1.6 GeV^2, are well described by the model.Comment: 17 pages, 19 figure

    Higgs Sector Radiative Corrections and s-Channel Production

    Full text link
    Higgs boson mass sum rules of supersymmetric models offer attractive targets for precision tests at future muon colliders. These sum rules involve the gauge boson masses as well as the masses of the Higgs boson states which can be precisely measured in the ss-channel production process at a muon collider. These measurements can sensitively probe radiative corrections to the Higgs boson masses as well as test for CP-violation and nonminimality of the Higgs sector.Comment: 4 pages, 2 figures, published versio

    Neutral Pions and Eta Mesons as Probes of the Hadronic Fireball in Nucleus-Nucleus Collisions around 1A GeV

    Full text link
    Chemical and thermal freeze-out of the hadronic fireball formed in symmetric collisions of light, intermediate-mass, and heavy nuclei at beam energies between 0.8A GeV and 2.0A GeV are discussed in terms of an equilibrated, isospin-symmetric ideal hadron gas with grand-canonical baryon-number conservation. For each collision system the baryochemical potential mu_B and the chemical freeze-out temperature T_c are deduced from the inclusive neutral pion and eta yields which are augmented by interpolated data on deuteron production. With increasing beam energy mu_B drops from 800 MeV to 650 MeV, while T_c rises from 55 MeV to 90 MeV. For given beam energy mu_B grows with system size, whereas T_c remains constant. The centrality dependence of the freeze-out parameters is weak as exemplified by the system Au+Au at 0.8A GeV. For the highest beam energies the fraction of nucleons excited to resonance states reaches freeze-out values of nearly 15 %, suggesting resonance densities close to normal nuclear density at maximum compression. In contrast to the particle yields, which convey the status at chemical freeze-out, the shapes of the related transverse-mass spectra do reflect thermal freeze-out. The observed thermal freeze-out temperatures T_th are equal to or slightly lower than T_c, indicative of nearly simultaneous chemical and thermal freeze-out.Comment: 42 pages, 12 figure
    • 

    corecore