11 research outputs found
Microbial cell factories for the sustainable manufacturing of B vitamins
Vitamins are essential compounds in human and animal diets. Their demand is increasing globally in food, feed, cosmetics, chemical and pharmaceutical industries. Most current production methods are unsustainable because they use non-renewable sources and often generate hazardous waste. Many microorganisms produce vitamins naturally, but their corresponding metabolic pathways are tightly regulated since vitamins are needed only in catalytic amounts. Metabolic engineering is accelerating the development of microbial cell factories for vitamins that could compete with chemical methods that have been optimized over decades, but scientific hurdles remain. Additional technological and regulatory issues need to be overcome for innovative bioprocesses to reach the market. Here, we review the current state of development and challenges for fermentative processes for the B vitamin group
Metabolic engineering of<i> Escherichia coli </i>for high-level production of free lipoic acid
L-Lipoic acid (LA) is an important antioxidant with various industrial applications as a nutraceutical and therapeutic. Currently, LA is produced by chemical synthesis. Cell factory development is complex as LA and its direct precursors only occur naturally in protein-bound forms. Here we report a rationally engineered LA cell factory and demonstrate de novo free LA production from glucose for the first time in E. coli. The pathway represents a significant challenge as the three key enzymes, native Octanoyltransferase (LipB) and Lipoyl Synthase (LipA), and heterologous Lipoamidase (LpA), are all toxic to overexpress in E. coli. To overcome the toxicity of LipB, functional metagenomic selection was used to identify a highly active and non-toxic LipB and LipA from S. liquefaciens. Using high throughput screening, we balanced translation initiation rates and dual, orthogonal induction systems for the toxic genes, LipA and LpA. The optimized strain yielded 2.5 mg free LA per gram of glucose in minimal media, expressing carefully balanced LipB and LipA, Enterococcus faecalis LpA, and a truncated, native, Dihydrolipoyllysine-residue acetyltransferase (AceF) lipoylation domain. When the optimized cell factory strain was cultivated in a fed-batch fermentation, a titer of 87mg/L free LA in the supernatant was reached after 48 h. This titer is ∼3000-fold higher than previously reported free LA titer and ∼8-fold higher than the previous best total, protein-bound LA titer. The strategies presented here could be helpful in designing, constructing and balancing biosynthetic pathways that harbor toxic enzymes with protein-bound intermediates or products
Discovery of a Biotin Synthase That Utilizes an Auxiliary 4Fe-5S Cluster for Sulfur Insertion
Biotin synthase (BioB) is a member of the Radical SAM superfamily of enzymes that catalyzes the terminal step of biotin (vitamin B7) biosynthesis, in which it inserts a sulfur atom in desthiobiotin to form a thiolane ring. How BioB accomplishes this difficult reaction has been the subject of much controversy, mainly around the source of the sulfur atom. However, it is now widely accepted that the sulfur atom inserted to form biotin stems from the sacrifice of the auxiliary 2Fe-2S cluster of BioB. Here, we bioinformatically explore the diversity of BioBs available in sequence databases and find an unexpected variation in the coordination of the auxiliary iron-sulfur cluster. After in vitro characterization, including the determination of biotin formation and representative crystal structures, we report a new type of BioB utilized by virtually all obligate anaerobic organisms. Instead of a 2Fe-2S cluster, this novel type of BioB utilizes an auxiliary 4Fe-5S cluster. Interestingly, this auxiliary 4Fe-5S cluster contains a ligated sulfide that we propose is used for biotin formation. We have termed this novel type of BioB, Type II BioB, with the E. coli 2Fe-2S cluster sacrificial BioB representing Type I. This surprisingly ubiquitous Type II BioB has implications for our understanding of the function and evolution of Fe-S clusters in enzyme catalysis, highlighting the difference in strategies between the anaerobic and aerobic world.</p