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Microbial cell factories offer new and sustainable production

routes for high-value chemicals. However, identification of high

producers within a library of clones remains a challenge. When

product formation is coupled to growth, millions of metabolic

variants can be effectively interrogated by growth selection,

dramatically increasing the throughput of strain evaluation.

While growth-coupled selections for cell factories have a long

history of success based on metabolite auxotrophies and toxic

antimetabolites, such methods are generally restricted to

molecules native to their host metabolism. New synthetic

biology tools offer the opportunity to rewire cellular metabolism

to depend on specific and non-native products for growth.
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Introduction
Toxic waste-products and dependency on petrochem-

icals are notably problematic in the chemical synthesis

industry. A forward-thinking solution is replacing man-

ufacture of materials, medicines, and biochemicals by

engineered microbial processes. Despite promising

benefits and a growing interest, widespread industrial

implementation of biotechnology has been constrained

by long development timelines and process economics

due to the challenges of strain engineering [1].

The expansion of the DNA modification toolbox allows

genetic editing in a targeted, rational manner, and this has

generated a profusion of engineering strategies based on

innovation in DNA synthesis and genome editing [2]. Yet

the technology to investigate the resulting clones is often
www.sciencedirect.com 
based on low-throughput, traditional analytics which cannot

address the number of clones present in such diverse

libraries.

Biological reporter systems that link product formation to

an immediately detectable output represent a potential

solution to accelerate laborious screening protocols using

either fluorescence-activated cell sorting [3�] or micro-

fluidic droplet based sorting [4]. However, the reporter

systems with the largest throughput are those that allow

for growth selection by wiring product formation to cell

growth [5��,6]. With a focus mainly on Escherichia coli, we

describe recent work on applications of conventional

selection strategies, review synthetic selection systems,

and illustrate the difficulties that arise from the construc-

tion and use of such approaches when deployed for

industrial purposes.

Expanding on conventional selection systems
Conventional selection systems have been employed in

industrial biotechnology since the 1970s and often rely

on auxotrophic knock-outs and inhibitory molecules to

construct dependencies on the target molecule. One

implementation of gene deletions is the discovery of

novel sequences for glycerol utilization using functional

metagenomic selections [7,8] (Figure 1a).

Auxotrophic strains are a powerful tool for selection, but

not all molecules of interest are amenable for this type of

growth-coupling. Hence, the construction of non-native

auxotrophies has been pursued. For example, 1-butanol

is an important fermentation product from Clostridia spp.

The native pathway is strongly CoA-dependent and this

co-factor demand has challenged optimization or heter-

ologous transfer. Particularly in E. coli, the metabolic

state of high CoA is only available during anaerobic

recycling of NADH via mixed-acid fermentation. In

several studies multiple knockouts of electron acceptors

leave 1-butanol as the only ‘NADH outlet’ for redox

balance under anaerobic growth [10��,11]. Without high

flux through the 1-butanol pathway, lack of NAD+

regeneration leads to growth arrest. The redox depen-

dency enabled the selection of mutants with increased

activity of CoA reductase from error-prone PCR mut

agenized libraries and fermentation titers for butanol

were improved to 88% of the theoretical yield, reaching

30 g/L. The authors note the suitability of this anaerobic

growth rescue approach for other NADH-dependent

products, including lactate, alanine, or succinate.
Current Opinion in Biotechnology 2019, 59:85–92
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Figure 1
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(a) Functional metagenomics selections can be utilized in metabolic engineering. Here, DNA fragments of a metagenomic library are selected for

improved capacity to utilize glycerol as a carbon source [9,8].

(b) The NAD+/NADH redox requirement of E. coli is utilized to build a strain dependent on 1-butanol product formation. As other mixed-fermentation

reactions are knocked out (grey box), NAD+ can only be regenerated by the 1-butanol pathway [10��].
The success of an industrial process can hinge on the choice

of a suitable production strain and overlap of target molecules

with metabolic dependency should be considered. Compu-

tational resources that identify relevant gene knock-outs are

useful tools [12�,13]. Predictive genome-scale modelling

methods, such as constraint-based reconstruction and analy-

sis (COBRA) methods, can probe further options for engi-

neering a synthetic metabolic link for compounds of interest

such as 2-oxoglutarate, succinate, or limonene [14–17].

These tools are introducing powerful computational

resources for a technology traditionally based in the lab.

Another selection approach to strain engineering relies on

antimetabolites, which are metabolite analogs that inhibit

growth [18]. This can be due to incorrect substrate recog-

nition leading to enzymatic inhibition or disruption of

pathway regulation. At the correct concentration, antime-

tabolites force the cell to elevate enzyme concentrations or

small-molecule products to overcome the inhibition bur-

den. For example, three structural antimetabolites enabled
Current Opinion in Biotechnology 2019, 59:85–92 
selection of strain variants for aspartic acid production with

up to fourfold increase of fitness in heterologous popula-

tions [19]. In another study, riboflavin production was

increased from below 35 mg/L to 680 mg/L in Candida
famata by the use of structural analogs of riboflavin in

combination with a color-based screen for the vitamin

[20��]. Antimetabolites can also be used to select for

increased tolerance to toxic pathway intermediates [21,22].

A further type of selection can be imposed by light-excit-

able quantum cadmium telluride dots. The dots generate

ROS-stress with the assumption that increased tolerance to

superoxide is correlated with strong NADPH metabolism,

key for industrial molecules. A loss-of-function mutation in

hdfR was identified using this selection and exhibited a

twofold increase in titers for 3-hydroxypropionic acid, a

NADPH-limited pathway [23].

Conventional selections are powerful tools for metabolic

engineering and expanding them with synthetic biology
www.sciencedirect.com
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tools is pushing their versatility even further. Muconic acid

production inSaccharomyces cerevisiaewas improvedthreefold

by combining a biosensor conferring geneticin resistance

with ALE against 4-fluorophenylalanine, a competitive

inhibitor of aromatic amino acids. The evolved strains gave

titers of 2.1 g/L [21]. Next-generation sequencing gives

insight into population behavior [19] and selections can

be combined with rational engineering [19,20��].

Nevertheless, important limitations remain for both anti-

metabolite and auxotrophic selections. Auxotrophic

demands exist only for essential metabolites, and this

molecular requirement must lie in the range of titers

relevant to industrial processes. Unfortunately, this is rarely

the case and accordingly selection options arising from

auxotrophic or inhibitory elements can be limited.

Synthetic coupling of growth to product
formation
Synthetic growth-coupled systems have the same aim as

conventional strain engineering: identification of high pro-

ducers from a pool of clones. Starting from ligand-responsive

switches, gene networks are rewired to monitor the presence
Figure 2
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of target molecules. Gene switches can be based on ribos-

witches (Figure 2) or transcription factors (TFs) (Figure 3),

which are then linked to selectable marker genes to generate

a synthetic or non-natural coupling of growth to product

formation.

A seminal selection system utilized the specific

response of the NahR TF to benzoic acids but not

the corresponding aldehydes and coupled it to tetracy-

cline resistance [24]. The selection identified increased

enzymatic activity of xylC, a benzaldehyde dehydroge-

nase from Pseudomonas putida. A separate system,

focused on lysine production, repurposed a riboswitch

upstream of lysC to build a ‘Riboselector’ such that the

presence of lysine reduces toxic expression of tetA [25].

In four rounds, a proof-of-concept plasmid expressing

varying promoter strengths for ppc, a key node for the

lysine pathway, was enriched. In the same work, a

tryptophan-specific Riboselector was generated from

an aptamer functioning as an ON switch.

A selection system for thiamine, capable of single cell

selection, was developed based on the natural ThiM19
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on of the molecule of interest facilitates a structural change of the

 (left) is a riboswitch without ligand in its OFF state so that the

ession of the selection marker, switching the selection to the ON state

f false positives, Genee et al. [6] place two separate antibiotic

iboswitches, shown to control Selection A and Selection B. When no

tions, a single riboswitch would lose its selection pressure and allow

election antibiotics only for i) high product concentrations and ii) no

Current Opinion in Biotechnology 2019, 59:85–92
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Figure 3
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Transcription-factor based selection.

(a) Biosynthesis of a target molecule is coupled to a cognate transcription factor which often dimerizes to activate or repress a selection marker.

Shown is a positive selection marker where the presence of the target molecule enables expression of an antibiotic resistance marker, allowing

only producers to grow on a selection plate.

(b) Negative selection strategies arise from markers with dual effects on the cell. For example, gene tetA provides resistance to tetracycline but

makes the host cell susceptible to NiCl2 toxicity. Negative selection functions ensure that selection ‘winners’ have not bypassed the selection

pressure.

(c) A workflow for a joint selection system with a positive and negative round is shown. From a diverse library, high producers are isolated using a

round of positive selection. Before screening, a negative selection step ensures that the selection pressure has been maintained to rule out false

positives.
riboswitch [6,26,27]. In the presence of thiamine pyro-

phosphate, the repurposed ThiM19 riboswitch allows

translation initiation of an otherwise repressed gene. In

the study, the switch was coupled to an antibiotic resis-

tance cassette, thereby generating a synthetic selection

strain growth-dependent on thiamine pyrophosphate.
Current Opinion in Biotechnology 2019, 59:85–92 
To apprehend selection escapees, the system was

expanded to a second thiamine pyrophosphate ribos-

witch with a different antibiotic resistance gene, which

reduced the rate of selection evasion by 1000-fold

(Figure 2b). The established selection system was

expanded for xanthine alkaloid selection [6] and applied
www.sciencedirect.com
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to metagenomic gene discovery and transport engineer-

ing [28]; demonstrating its versatility and selection

power.

As with the NahR example, further synthetic selections

often utilize TF-based metabolite sensing to condition-

ally express antibiotic resistance cassettes [29,30��,31,32].
A heterologous activator and promoter from Thauera sp.

conditionally expressed the antibiotic resistance cassette

tetA in the presence of 1-butanol. This system was used to

screen DadhE strains for plasmid-encoded RBS libraries

of heterologous kivD and ADH6 from yeast, which iden-

tified a strain with increased activity of 35% [30��]. Two

additional systems were built to showcase the utility of

conditional tetA expression. Firstly, the native E. coli
succinate pathway is regulated by the two-component

system, DcuR/DcuS, which was coupled to tetA expres-

sion. Secondly, a system for adipate was built from P.
putida TF PcaR, also linked to tetA [30��].

Nevertheless, evolutionary escapees can overwhelm selec-

tion systems [6,31]. A ‘toggled’ approach reduced this issue

by alternating between positive and negative selection

rounds (Figure 3c). In addition to enriching for high produ-

cers, the selection kills the fraction of non-producers that

have mutated to evade the selection system [33]. Using both

tolC and kanamycin resistance under a single conditional

module can generate a kanamycin-resistant strain suscepti-

ble to colicin-E1 [31]. Selection winners can be tested for

false positivity by colicin-E1 susceptibility. Toggled selec-

tion was used to identify a 36-fold improved naringenin

producerfrom genome-engineered librariesusing tolC under

regulation of TtgR. In a second example, tolC regulated by

CdaR increased glucaric acid production 22-fold [31].

Synthetic selections have also been applied to increase

protein expression and export. To avoid extraction protocols,

secretion is advantageous for recombinant protein produc-

tion. A common approach is to fuse the protein of interest to

naturally secreted substancessuch asYebFor OsmY, but this

suffers from low yields [34]. Coupling of YebF to BLiP, a

b-lactamase inhibitor protein, conveys increased resistance

against b-lactam antibiotics. This approach was used to find

mutants with improved extracellular accumulation of

desired proteins in libraries with 1012 members [34].

Challenges of developing synthetic selection
systems
At the heart of many selection systems are genetic

switches harvested from nature. Yet, the construction

of novel selection systems from an identified switch is

challenging. Nevertheless, recent developments point

toward efficient design strategies that could be applied

to expand the repertoire of selections.

Despite the prevalence of regulatory elements across

diverse genomes, the identification or construction of
www.sciencedirect.com 
robust metabolic sensors can be laborious for either protein

or RNA-based sensors [35]. SIGEX (substrate-induced

gene-expression screening), which places a promoterless

reporter gene on either side of a randomized metagenomic

region in the presence of the desired target, is a powerful

tool. If a transcription-factor-like sequence is present, the

reporter gene will be expressed [36]. The identification of

specific aptamers using SELEX (systematic evolution of

ligands by exponential enrichment) and the rational design

of riboswitchesarealsonot trivial [37,38], as the relationship

between sequence and function of RNA is not readily

discerned [39]. Modelling RNA sequence to function

may assist in the future construction of riboswitch-based

selection systems by tapping into the power of algorithmic

approaches [40,41]. An approach called ‘term-seq’ identi-

fies natural riboregulators in genome sequences via early

termination events. This methodology is independent of

evolutionary conservation and can find riboswitches that

comparative genomics would not [37,38].

After identification, biosensors can still behave unexpect-

edly in the production host. Insufficient specificity can

reduce the applicability of a biosensor. For example, the

adipate TF-sensor also responded to pimelate (3et0).

Nevertheless, non-specific biosensors can be powerful

for some applications. One study used a geneticin-expres-

sing proxy biosensor, which responded to a pathway

intermediate instead of the target molecule, to identify

overproduction strains [21]. Further, co-cultivation strat-

egies can overcome the difficulties of having selection

and production in a single strain. A ultra high-throughput

application of fluorescence markers was used to screen

multiplexed libraries and identify a Bacillus subtilis pro-

ducer for riboflavin via alginate co-encapsulation with an

E. coli sensor strain [42]. Proxy biosensors and co-cultiva-

tion may offer solutions when appropriate TFs or ribos-

witches are not available.

A separate issue concerns biosensor range, that is, metab-

olite concentrations which lead to discernable signal

changes (Figure 4a). Dynamic ranges are rarely appropri-

ate for continuous selection systems with increasing

titers. A fluorescent biosensor for L-valine production in

Corynebacterium glutamicum enabled increased titers by

25% for 5 rounds of FACS sorting before the upper

detection limit had been reached [43]. The 1-butanol

sensor described above [30��] could not be used above

25 mM metabolite concentration. The glucaric acid sys-

tem [31] also reports the range’s limitations. A proffered

solution is transport regulation to direct the rate of mole-

cule uptake and thereby the dynamic sensor range [31]

(Figure 4b). A further strategy is the construction of

molecular buffer systems. In this work [44] a TF is split

into two functional domains, DNA-binding and activa-

tion. An excess of DNA binding domain mimics chemical

pH buffer systems to generate a robust signal and protec-

tion against promoter leakiness.
Current Opinion in Biotechnology 2019, 59:85–92
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Figure 4
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Tuning selection systems and limiting evolutionary escape.

(a) Tuning of a selection system.

The graph indicates the output of a selection marker based on metabolite concentration. Two saturation points are indicated; a lower threshold

where decrease in production does not lead to decrease of output (orange dotted line) and an upper threshold where increase in production does

not lead to increase in output (blue dotted line). The colored boxes below show the effect of high or low production at each of the three phases,

emphasizing the importance of biosensor range to get a screenable output correlated with product formation.

(b) As in Raman et al. [31], engineering of transporters can shift the functional range of a selection system. Two sensors are shown, with (left) or

without (right) active import, which changes the conditional expression of the selection marker even though the extracellular metabolite

concentrations remain the same.

(c) Loss of selection via evolutionary escapees.

Overview of a cell with a generic growth-coupled selection system: a transcription factor binds to the molecule of interest, dimerizes, and

activates the expression of an antibiotic resistance cassette. Numberings 1–5 illustrate potential mechanisms of selection escapee. These

mechanisms would allow the cell to survive an antibiotic challenge even if it did not produce the molecule of interest.

Current Opinion in Biotechnology 2019, 59:85–92 www.sciencedirect.com
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Finally, a major obstacle is the intrinsic response of biological

systems to overcome selective pressure [45,46]. A single point

mutation in promoter regions can confer loss of selection,

which provides the escapee with unrivalled growth advantage

compared to the remaining population (Figure 4c). The

thiamine riboswitch gave a false positive rate of 10E-3 for

an early, unoptimized selection construct [6]. In nature,

genetic networks often display redundancy so that their

function is robust to mutagenic effects. Gene duplication is

a strong opposition to genetic drift, and this strategy can be

utilized to reduce selection escape. Redundancy within selec-

tions can consist of two antibiotic resistance cassettes under

one regulator [6] or single genes with two controllable outputs

[33]. Raman et al. [31] demonstrate the versatility of selection

doubling by expanding ten different biosensors in a modular

way. The concept of redundancy is a powerful addition to the

toolkit of selection systems.

Conclusion
Within industrialbiotechnology, theneedfor robust,modular,

and usable selection systems arise with the ability to manipu-

late,design,andmultiplextheDNAcode.Selectionstrategies

of conventional strain engineering can identify genotypes

with higher production capacity and are amenable for expan-

sion with modern techniques. The further development of

synthetic circuits to wire growth to product formation allows

for the characterization of millions of genetic variants, with

particular applications to generatesustainable cell factories for

a greener chemical industry. Nevertheless, the success of

synthetic selection systems will rely on overcoming the

challenges of their construction and application: identification

of relevant conditional modules, solving issues of specificity

and range of in vivo biosensors, and addressing the false

positives and negatives that arise from loss of selection.
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