125 research outputs found

    On the Derivation of the Exact Slope Function

    Full text link
    In this note we give a simple derivation of the exact slope function conjectured by Basso for the anomalous dimensions of Wilson operators in the sl2 sector of planar N=4 Super-Yang-Mills theory. We also discuss generalizations of this result for higher charges and other sectors.Comment: 8pages. v2: minor corrections, JHEP versio

    Analytic Solution of Bremsstrahlung TBA

    Full text link
    We consider the quark--anti-quark potential on the three sphere or the generalized cusp anomalous dimension in planar N=4 SYM. We concentrate on the vacuum potential in the near BPS limit with LL units of R-charge. Equivalently, we study the anomalous dimension of a super-Wilson loop with L local fields inserted at a cusp. The system is described by a recently proposed infinite set of non-linear integral equations of the Thermodynamic Bethe Ansatz (TBA) type. That system of TBA equations is very similar to the one of the spectral problem but simplifies a bit in the near BPS limit. Using techniques based on the Y-system of functional equations we first reduced the infinite system of TBA equations to a Finite set of Nonlinear Integral Equations (FiNLIE). Then we solve the FiNLIE system analytically, obtaining a simple analytic result for the potential! Surprisingly, we find that the system has equivalent descriptions in terms of an effective Baxter equation and in terms of a matrix model. At L=0, our result matches the one obtained before using localization techniques. At all other L's, the result is new. Having a new parameter, L, allows us to take the large L classical limit. We use the matrix model description to solve the classical limit and match the result with a string theory computation. Moreover, we find that the classical string algebraic curve matches the algebraic curve arising from the matrix model.Comment: 50 pages, 5 figures. v2: references added, JHEP versio

    Quark--anti-quark potential in N=4 SYM

    Get PDF
    We construct a closed system of equations describing the quark--anti-quark potential at any coupling in planar N=4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion. Moreover, we study analytically the generalized quark--anti-quark potential in the limit of large imaginary twist to all orders in perturbation theory. We demonstrate how the QSC reduces in this case to a one-dimensional Schrodinger equation. In the process we establish a link between the Q-functions and the solution of the Bethe-Salpeter equation.Comment: 31 pages, 1 figure; v2: minor correcton

    Quantum Spectral Curve at Work: From Small Spin to Strong Coupling in N=4 SYM

    Full text link
    We apply the recently proposed quantum spectral curve technique to the study of twist operators in planar N=4 SYM theory. We focus on the small spin expansion of anomalous dimensions in the sl(2) sector and compute its first two orders exactly for any value of the 't Hooft coupling. At leading order in the spin S we reproduced Basso's slope function. The next term of order S^2 structurally resembles the Beisert-Eden-Staudacher dressing phase and takes into account wrapping contributions. This expansion contains rich information about the spectrum of local operators at strong coupling. In particular, we found a new coefficient in the strong coupling expansion of the Konishi operator dimension and confirmed several previously known terms. We also obtained several new orders of the strong coupling expansion of the BFKL pomeron intercept. As a by-product we formulated a prescription for the correct analytical continuation in S which opens a way for deriving the BFKL regime of twist two anomalous dimensions from AdS/CFT integrability.Comment: 53 pages, references added; v3: due to a typo in the coefficients C_2 and D_2 on page 29 we corrected the rational part of the strong coupling predictions in equations (1.5-6), (6.22-24), (6.27-30) and in Table

    Quantum folded string and integrability: from finite size effects to Konishi dimension

    Get PDF
    Using the algebraic curve approach we one-loop quantize the folded string solution for the type IIB superstring in AdS(5)xS(5). We obtain an explicit result valid for arbitrary values of its Lorentz spin S and R-charge J in terms of integrals of elliptic functions. Then we consider the limit S ~ J ~ 1 and derive the leading three coefficients of strong coupling expansion of short operators. Notably, our result evaluated for the anomalous dimension of the Konishi state gives 2\lambda^{1/4}-4+2/\lambda^{1/4}. This reproduces correctly the values predicted numerically in arXiv:0906.4240. Furthermore we compare our result using some new numerical data from the Y-system for another similar state. We also revisited some of the large S computations using our methods. In particular, we derive finite--size corrections to the anomalous dimension of operators with small J in this limit.Comment: 20 pages, 1 figure; v2: references added, typos corrected; v3: major improvement of the references; v4: Discussion of short operators is restricted to the case n=1. This restriction does not affect the main results of the pape

    Tailoring Three-Point Functions and Integrability III. Classical Tunneling

    Full text link
    We compute three-point functions between one large classical operator and two large BPS operators at weak coupling. We consider operators made out of the scalars of N=4 SYM, dual to strings moving in the sphere. The three-point function exponentiates and can be thought of as a classical tunneling process in which the classical string-like operator decays into two classical BPS states. From an Integrability/Condensed Matter point of view, we simplified inner products of spin chain Bethe states in a classical limit corresponding to long wavelength excitations above the ferromagnetic vacuum. As a by-product we solved a new long-range Ising model in the thermodynamic limit.Comment: 37 pages, 10 figure
    • …
    corecore