7 research outputs found

    ErgoExplorer: Interactive Ergonomic Risk Assessment from Video Collections

    Get PDF
    Ergonomic risk assessment is now, due to an increased awareness, carried out more often than in the past. The conventional risk assessment evaluation, based on expert-assisted observation of the workplaces and manually filling in score tables, is still predominant. Data analysis is usually done with a focus on critical moments, although without the support of contextual information and changes over time. In this paper we introduce ErgoExplorer, a system for the interactive visual analysis of risk assessment data. In contrast to the current practice, we focus on data that span across multiple actions and multiple workers while keeping all contextual information. Data is automatically extracted from video streams. Based on carefully investigated analysis tasks, we introduce new views and their corresponding interactions. These views also incorporate domain-specific score tables to guarantee an easy adoption by domain experts. All views are integrated into ErgoExplorer, which relies on coordinated multiple views to facilitate analysis through interaction. ErgoExplorer makes it possible for the first time to examine complex relationships between risk assessments of individual body parts over long sessions that span multiple operations. The newly introduced approach supports analysis and exploration at several levels of detail, ranging from a general overview, down to inspecting individual frames in the video stream, if necessary. We illustrate the usefulness of the newly proposed approach applying it to several datasets.Fil: Massiris, Manlio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Rados, Sanjin. VRVis Research Center In Vienna, Austria; AustriaFil: Matkovic, Kresimir. VRVis Research Center; AustriaFil: Groller, M. Eduard. Technische Universitat Wien; AustriaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentin

    VAICo: Visual Analysis for Image Comparison

    No full text

    Placenta maps:In utero placental health assessment of the human fetus

    No full text
    The human placenta is essential for the supply of the fetus. To monitor the fetal development, imaging data is acquired using ultrasound (US). Although it is currently the gold-standard in fetal imaging, it might not capture certain abnormalities of the placenta. Magnetic resonance imaging (MRI) is a safe alternative for the in utero examination while acquiring the fetus data in higher detail. Nevertheless, there is currently no established procedure for assessing the condition of the placenta and consequently the fetal health. Due to maternal respiration and inherent movements of the fetus during examination, a quantitative assessment of the placenta requires fetal motion compensation, precise placenta segmentation and a standardized visualization, which are challenging tasks. Utilizing advanced motion compensation and automatic segmentation methods to extract the highly versatile shape of the placenta, we introduce a novel visualization technique that presents the fetal and maternal side of the placenta in a standardized way. Our approach enables physicians to explore the placenta even in utero. This establishes the basis for a comparative assessment of multiple placentas to analyze possible pathologic arrangements and to support the research and understanding of this vital organ. Additionally, we propose a three-dimensional structure-aware surface slicing technique in order to explore relevant regions inside the placenta. Finally, to survey the applicability of our approach, we consulted clinical experts in prenatal diagnostics and
    corecore