59 research outputs found

    Prethermalization and thermalization in models with weak integrability breaking

    Full text link
    We study the effects of integrability breaking perturbations on the non-equilibrium evolution of many-particle quantum systems. We focus on a class of spinless fermion models with weak interactions. We employ equation of motion techniques that can be viewed as generalizations of quantum Boltzmann equations. We benchmark our method against time dependent density matrix renormalization group computations and find it to be very accurate as long as interactions are weak. For small integrability breaking, we observe robust prethermalization plateaux for local observables on all accessible time scales. Increasing the strength of the integrability breaking term induces a "drift" away from the prethermalization plateaux towards thermal behaviour. We identify a time scale characterizing this cross-over.Comment: 9 pages, 4 figure

    Full counting statistics in the transverse field Ising chain

    Get PDF
    We consider the full probability distribution for the transverse magnetization of a finite subsystem in the transverse field Ising chain. We derive a determinant representation of the corresponding characteristic function for general Gaussian states. We consider applications to the full counting statistics in the ground state, finite temperature equilibrium states, non-equilibrium steady states and time evolution after global quantum quenches. We derive an analytical expression for the time and subsystem size dependence of the characteristic function at sufficiently late times after a quantum quench. This expression features an interesting multiple light-cone structure

    Full counting statistics in the spin-1/2 Heisenberg XXZ chain

    Get PDF
    The spin-1/2 Heisenberg chain exhibits a quantum critical regime characterized by quasi long-range magnetic order at zero temperature. We quantify the strength of quantum fluctuations in the ground state by determining the probability distributions of the components of the (staggered) subsystem magnetization. Some of these exhibit scaling and the corresponding universal scaling functions can be determined by free fermion methods and by exploiting a relation with the boundary sine-Gordon model

    Plasma TF activity predicts cardiovascular mortality in patients with acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Objectives and Background</p> <p>Tissue factor (TF) contributes to thrombosis following plaque disruption in acute coronary syndromes (ACS). Aim of the study was to investigate the impact of plasma TF activity on prognosis in patients with ACS.</p> <p>Methods and Results</p> <p>One-hundred seventy-four patients with unstable Angina pectoris (uAP) and 112 patients with acute myocardial infarction (AMI) were included with a mean follow up time of 3.26 years. On admission, plasma TF activity was assessed. Patients were categorized into 2 groups: a high-TF activity group with TF >24 pmol/L and low TF activity group with TF ≤ 24 pmol/L. Fifteen cardiovascular deaths occurred in the uAP group and 16 in the AMI group. In AMI TF activity was 24,9 ± 2,78 pmol/l (mean ± SEM) in survivors and 40,9 ± 7,96 pmol/l in nonsurvivors (P = 0.024). In uAP no differences were observed (25.0 ± 8.04 pmol/L nonsurvivors vs. 25.7 ± 2.14 pmol/L survivors; P = 0.586). Kaplan-Meier estimates of survival at 3.26 years regarding TF activity in AMI were 81.3% and 92.2% with an hazard ratio of 3.02 (95% CI [1.05–8.79], P = 0.03). The Cox proportional hazards model adjusting for correlates of age and risk factors showed that plasma TF activity was an independent correlate of survival (hazard ratio 9.27, 95% CI [1.24–69.12], P = 0.03). In an additional group of patients with uAP and AMI, we identified circulating microparticles as the prevailing reservoir of plasma TF activity in acute coronary syndromes.</p> <p>Conclusion</p> <p>Systemic TF activity in AMI has an unfavorable prognostic value and as a marker for dysregulated coagulation may add to predict the atherothrombotic risk.</p

    IL7 genetic variation and toxicity to immune checkpoint blockade in patients with melanoma

    Get PDF
    Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma

    Local erythropoietin and endothelial progenitor cells improve regional cardiac function in acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expanded endothelial progenitor cells (eEPC) improve global left ventricular function in experimental myocardial infarction (MI). Erythropoietin beta (EPO) applied together with eEPC may improve regional myocardial function even further by anti-apoptotic and cardioprotective effects. Aim of this study was to evaluate intramyocardial application of eEPCs and EPO as compared to eEPCs or EPO alone in experimental MI.</p> <p>Methods and Results</p> <p>In vitro experiments revealed that EPO dosed-dependently decreased eEPC and leukocyte apoptosis. Moreover, in the presence of EPO mRNA expression in eEPC of proangiogenic and proinflammatory mediators measured by TaqMan PCR was enhanced. Experimental MI was induced by ligation and reperfusion of the left anterior descending coronary artery of nude rats (n = 8-9). After myocardial transplantation of eEPC and EPO CD68+ leukocyte count and vessel density were enhanced in the border zone of the infarct area. Moreover, apoptosis of transplanted CD31 + TUNEL + eEPC was decreased as compared to transplantation of eEPCs alone. Regional wall motion of the left ventricle was measured using Magnetic Resonance Imaging. After injection of eEPC in the presence of EPO regional wall motion significantly improved as compared to injection of eEPCs or EPO alone.</p> <p>Conclusion</p> <p>Intramyocardial transplantation of eEPC in the presence of EPO during experimental MI improves regional wall motion. This was associated with an increased local inflammation, vasculogenesis and survival of the transplanted cells. Local application of EPO in addition to cell therapy may prove beneficial in myocardial remodeling.</p
    corecore